咨询与建议

限定检索结果

文献类型

  • 315 篇 会议
  • 126 篇 期刊文献

馆藏范围

  • 441 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 315 篇 工学
    • 236 篇 计算机科学与技术...
    • 206 篇 软件工程
    • 98 篇 信息与通信工程
    • 24 篇 生物工程
    • 17 篇 控制科学与工程
    • 17 篇 化学工程与技术
    • 16 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 10 篇 生物医学工程(可授...
    • 7 篇 机械工程
    • 7 篇 建筑学
    • 6 篇 安全科学与工程
    • 5 篇 土木工程
    • 5 篇 农业工程
  • 165 篇 理学
    • 118 篇 物理学
    • 54 篇 数学
    • 28 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 17 篇 化学
    • 10 篇 系统科学
  • 78 篇 管理学
    • 69 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 14 篇 医学
    • 12 篇 基础医学(可授医学...
    • 12 篇 临床医学
    • 7 篇 药学(可授医学、理...
  • 9 篇 法学
    • 7 篇 社会学
  • 8 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 5 篇 教育学
  • 5 篇 农学
    • 5 篇 作物学
  • 1 篇 经济学

主题

  • 44 篇 speech recogniti...
  • 30 篇 speech
  • 30 篇 training
  • 18 篇 acoustics
  • 14 篇 machine translat...
  • 12 篇 decoding
  • 12 篇 social networkin...
  • 12 篇 speaker recognit...
  • 11 篇 computational mo...
  • 11 篇 semantics
  • 10 篇 conferences
  • 10 篇 hidden markov mo...
  • 9 篇 speech processin...
  • 9 篇 computational li...
  • 9 篇 embeddings
  • 8 篇 training data
  • 8 篇 feature extracti...
  • 8 篇 natural language...
  • 8 篇 pipelines
  • 7 篇 lattices

机构

  • 88 篇 human language t...
  • 54 篇 human language t...
  • 43 篇 center for langu...
  • 21 篇 center for langu...
  • 20 篇 human language t...
  • 20 篇 human language t...
  • 18 篇 center for langu...
  • 15 篇 human language t...
  • 13 篇 center for langu...
  • 12 篇 human language t...
  • 11 篇 human language t...
  • 10 篇 johns hopkins un...
  • 9 篇 johns hopkins un...
  • 8 篇 human language t...
  • 7 篇 human language t...
  • 7 篇 department of co...
  • 7 篇 xiaomi corp.
  • 6 篇 computer and inf...
  • 6 篇 xiaomi corporati...
  • 6 篇 center for langu...

作者

  • 64 篇 dredze mark
  • 50 篇 khudanpur sanjee...
  • 43 篇 van durme benjam...
  • 30 篇 dehak najim
  • 27 篇 sanjeev khudanpu...
  • 21 篇 post matt
  • 20 篇 mcnamee paul
  • 20 篇 hermansky hynek
  • 20 篇 callison-burch c...
  • 19 篇 villalba jesús
  • 18 篇 povey daniel
  • 16 篇 duh kevin
  • 16 篇 mayfield james
  • 15 篇 zelasko piotr
  • 15 篇 daniel povey
  • 15 篇 watanabe shinji
  • 14 篇 wiesner matthew
  • 14 篇 andrews nicholas
  • 13 篇 paul michael j.
  • 13 篇 mccree alan

语言

  • 432 篇 英文
  • 9 篇 其他
检索条件"机构=Center for Language and Speech Processing and Human Language Technology Center of Excellence"
441 条 记 录,以下是181-190 订阅
排序:
Speaker diarization using deep neural network embeddings
Speaker diarization using deep neural network embeddings
收藏 引用
IEEE International Conference on Acoustics, speech and Signal processing
作者: Daniel Garcia-Romero David Snyder Gregory Sell Daniel Povey Alan McCree Human Language Technology Center of Excellence & Center for Language and Speech Processing The Johns Hopkins University Baltimore MD 21218 USA
Speaker diarization is an important front-end for many speech technologies in the presence of multiple speakers, but current methods that employ i-vector clustering for short segments of speech are potentially too cum... 详细信息
来源: 评论
Topic identification of spoken documents using unsupervised acoustic unit discovery
Topic identification of spoken documents using unsupervised ...
收藏 引用
2017 IEEE International Conference on Acoustics, speech, and Signal processing, ICASSP 2017
作者: Kesiraju, Santosh Pappagari, Raghavendra Ondel, Lucas Burget, Lukas Dehak, Najim Khudanpur, Sanjeev Černocký, Jan Gangashetty, Suryakanth V Brno University of Technology SpeechatFIT and IT4I Center of Excellence Czech Republic Center for Language and Speech Processing Johns Hopkins University Baltimore United States International Institute of Information Technology Hyderabad India
This paper investigates the application of unsupervised acoustic unit discovery for topic identification (topic ID) of spoken audio documents. The acoustic unit discovery method is based on a non-parametric Bayesian p... 详细信息
来源: 评论
Acoustic data-driven lexicon learning based on a greedy pronunciation selection framework
arXiv
收藏 引用
arXiv 2017年
作者: Zhang, Xiaohui Manohar, Vimal Povey, Daniel Khudanpur, Sanjeev Center for Language and Speech Processing Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD21218 United States
speech recognition systems for irregularly-spelled languages like English normally require hand-written pronunciations. In this paper, we describe a system for automatically obtaining pronunciations of words for which... 详细信息
来源: 评论
Using of heterogeneous corpora for training of an ASR system
arXiv
收藏 引用
arXiv 2017年
作者: Trmal, Jan Kumar, Gaurav Manohar, Vimal Khudanpur, Sanjeev Post, Matt McNamee, Paul Center for Language and Speech Processing Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD21218 United States
The paper summarizes the development of the LVCSR system built as a part of the Pashto speech-translation system at the SCALE (Summer Camp for Applied language Exploration) 2015 workshop on "speech-to-text-transl... 详细信息
来源: 评论
Grammatical error correction with neural reinforcement learning
arXiv
收藏 引用
arXiv 2017年
作者: Sakaguchi, Keisuke Post, Matt van Durme, Benjamin Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
We propose a neural encoder-decoder model with reinforcement learning (NRL) for grammatical error correction (GEC). Unlike conventional maximum likelihood estimation (MLE), the model directly optimizes towards an obje... 详细信息
来源: 评论
Topic identification for speech without ASR
arXiv
收藏 引用
arXiv 2017年
作者: Liu, Chunxi Trmal, Jan Wiesner, Matthew Harman, Craig Khudanpur, Sanjeev Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
Modern topic identification (topic ID) systems for speech use automatic speech recognition (ASR) to produce speech transcripts, and perform supervised classification on such ASR outputs. However, under resource-limite... 详细信息
来源: 评论
Feature Generation for Robust Semantic Role Labeling
arXiv
收藏 引用
arXiv 2017年
作者: Wolfe, Travis Dredze, Mark van Durme, Benjamin Human Language Technology Center of Excellence Johns Hopkins University
Hand-engineered feature sets are a well understood method for creating robust NLP models, but they require a lot of expertise and effort to create. In this work we describe how to automatically generate rich feature s... 详细信息
来源: 评论
The JHU Machine Translation Systems for WMT 2016  1
The JHU Machine Translation Systems for WMT 2016
收藏 引用
1st Conference on Machine Translation, WMT 2016, held at the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016
作者: Ding, Shuoyang Duh, Kevin Khayrallah, Huda Koehn, Philipp Post, Matt Center for Language and Speech Processing Human Language Technology Center of Excellence Department of Computer Science Johns Hopkins University BaltimoreMD United States
This paper describes the submission of Johns Hopkins University for the shared translation task of ACL 2016 First Conference on Machine Translation (WMT 2016). We set up phrase-based, hierarchical phrase-based and syn... 详细信息
来源: 评论
Joint acoustic and class inference for weakly supervised sound event detection
arXiv
收藏 引用
arXiv 2018年
作者: Kothinti, Sandeep Imoto, Keisuke Chakrabarty, Debmalya Sell, Gregory Watanabe, Shinji Elhilali, Mounya Department of Electrical and Computer Engineering Johns Hopkins University BaltimoreMD United States College of Information Science and Engineering Ritsumeikan University Shiga Japan Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
Sound event detection is a challenging task, especially for scenes with multiple simultaneous events. While event classification methods tend to be fairly accurate, event localization presents additional challenges, e... 详细信息
来源: 评论
Large language models surpass human experts in predicting neuroscience results
arXiv
收藏 引用
arXiv 2024年
作者: Luo, Xiaoliang Rechardt, Akilles Sun, Guangzhi Nejad, Kevin K. Yáñez, Felipe Yilmaz, Bati Lee, Kangjoo Cohen, Alexandra O. Borghesani, Valentina Pashkov, Anton Marinazzo, Daniele Nicholas, Jonathan Salatiello, Alessandro Sucholutsky, Ilia Minervini, Pasquale Razavi, Sepehr Rocca, Roberta Yusifov, Elkhan Okalova, Tereza Gu, Nianlong Ferianc, Martin Khona, Mikail Patil, Kaustubh R. Lee, Pui-Shee Mata, Rui Myers, Nicholas E. Bizley, Jennifer K. Musslick, Sebastian Bilgin, Isil Poyraz Niso, Guiomar Ales, Justin M. Gaebler, Michael Murty, N. Apurva Ratan Loued-Khenissi, Leyla Behler, Anna Hall, Chloe M. Dafflon, Jessica Bao, Sherry Dongqi Love, Bradley C. Department of Experimental Psychology University College London London United Kingdom Department of Engineering University of Cambridge Cambridge United Kingdom Department of Physiology Anatomy & Genetics University of Oxford Oxford United Kingdom Max Planck Institute for Neurobiology of Behavior – caesar Bonn Germany Bilkent University Ankara Turkey Department of Computer Science University of Bristol Bristol United Kingdom The Alan Turing Institute London United Kingdom Department of Psychiatry Yale University New Haven United States Psychology Emory University Atlanta United States Faculty of Psychology and Educational Sciences Université de Genève Genève Switzerland Neurosurgery Novosibirsk State Medical University Novosibirsk Russia Federal Center of Neurosurgery FSBI Novosibirsk Russia Department of Data Collection and Processing Systems Novosibirsk State Technical University Novosibirsk Russia Department of Data Analysis Ghent University Ghent Belgium Psychology New York University New York United States Department of Cognitive Neurology University of Tübingen Tübingen Germany Computer Science Princeton University Princeton United States ILCC University of Edinburgh Edinburgh United Kingdom Philosophy Psychology and Language Sciences The University of Edinburgh Edinburgh United Kingdom Department of Culture Cognition and Computation Aarhus University Aarhus Denmark Department of Molecular Life Sciences University of Zurich Zurich Switzerland Bioengineering University of Pennsylvania Philadelphia United States Linguistic Research Infrastructure University of Zurich Zurich Switzerland Electronic and Electrical Engineering University College London London United Kingdom Brain and Cognitive Sciences Massachusetts Institute of Technology CambridgeMA United States Institute of Neuroscience and Medicine INM-7: Brain and Behaviour Research Centre Jülich Jülich Germany Medical Faculty Institute of Systems Neuroscience Heinrich Hein
Scientific discoveries often hinge on synthesizing decades of research, a task that potentially outstrips human information processing capacities. Large language models (LLMs) offer a solution. LLMs trained on the vas... 详细信息
来源: 评论