咨询与建议

限定检索结果

文献类型

  • 315 篇 会议
  • 126 篇 期刊文献

馆藏范围

  • 441 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 315 篇 工学
    • 236 篇 计算机科学与技术...
    • 206 篇 软件工程
    • 98 篇 信息与通信工程
    • 24 篇 生物工程
    • 17 篇 控制科学与工程
    • 17 篇 化学工程与技术
    • 16 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 10 篇 生物医学工程(可授...
    • 7 篇 机械工程
    • 7 篇 建筑学
    • 6 篇 安全科学与工程
    • 5 篇 土木工程
    • 5 篇 农业工程
  • 165 篇 理学
    • 118 篇 物理学
    • 54 篇 数学
    • 28 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 17 篇 化学
    • 10 篇 系统科学
  • 78 篇 管理学
    • 69 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 14 篇 医学
    • 12 篇 基础医学(可授医学...
    • 12 篇 临床医学
    • 7 篇 药学(可授医学、理...
  • 9 篇 法学
    • 7 篇 社会学
  • 8 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 5 篇 教育学
  • 5 篇 农学
    • 5 篇 作物学
  • 1 篇 经济学

主题

  • 44 篇 speech recogniti...
  • 30 篇 speech
  • 30 篇 training
  • 18 篇 acoustics
  • 14 篇 machine translat...
  • 12 篇 decoding
  • 12 篇 social networkin...
  • 12 篇 speaker recognit...
  • 11 篇 computational mo...
  • 11 篇 semantics
  • 10 篇 conferences
  • 10 篇 hidden markov mo...
  • 9 篇 speech processin...
  • 9 篇 computational li...
  • 9 篇 embeddings
  • 8 篇 training data
  • 8 篇 feature extracti...
  • 8 篇 natural language...
  • 8 篇 pipelines
  • 7 篇 lattices

机构

  • 88 篇 human language t...
  • 54 篇 human language t...
  • 43 篇 center for langu...
  • 21 篇 center for langu...
  • 20 篇 human language t...
  • 20 篇 human language t...
  • 18 篇 center for langu...
  • 15 篇 human language t...
  • 13 篇 center for langu...
  • 12 篇 human language t...
  • 11 篇 human language t...
  • 10 篇 johns hopkins un...
  • 9 篇 johns hopkins un...
  • 8 篇 human language t...
  • 7 篇 human language t...
  • 7 篇 department of co...
  • 7 篇 xiaomi corp.
  • 6 篇 computer and inf...
  • 6 篇 xiaomi corporati...
  • 6 篇 center for langu...

作者

  • 64 篇 dredze mark
  • 50 篇 khudanpur sanjee...
  • 43 篇 van durme benjam...
  • 30 篇 dehak najim
  • 27 篇 sanjeev khudanpu...
  • 21 篇 post matt
  • 20 篇 mcnamee paul
  • 20 篇 hermansky hynek
  • 20 篇 callison-burch c...
  • 19 篇 villalba jesús
  • 18 篇 povey daniel
  • 16 篇 duh kevin
  • 16 篇 mayfield james
  • 15 篇 zelasko piotr
  • 15 篇 daniel povey
  • 15 篇 watanabe shinji
  • 14 篇 wiesner matthew
  • 14 篇 andrews nicholas
  • 13 篇 paul michael j.
  • 13 篇 mccree alan

语言

  • 431 篇 英文
  • 10 篇 其他
检索条件"机构=Center for Language and Speech Processing and Human Language Technology Center of Excellence"
441 条 记 录,以下是241-250 订阅
排序:
JHU ASpIRE system: Robust LVCSR with TDNNS, iVector adaptation and RNN-LMS
JHU ASpIRE system: Robust LVCSR with TDNNS, iVector adaptati...
收藏 引用
IEEE Workshop on Automatic speech Recognition and Understanding
作者: Vijayaditya Peddinti Guoguo Chen Vimal Manohar Tom Ko Daniel Povey Sanjeev Khudanpur Center for language and speech processing The Johns Hopkins University Baltimore MD USA Huawei Noah's Ark Research Lab Hong Kong China Human Language Technology Center of Excellence The Johns Hopkins University Baltimore MD USA
Multi-style training, using data which emulates a variety of possible test scenarios, is a popular approach towards robust acoustic modeling. However acoustic models capable of exploiting large amounts of training dat... 详细信息
来源: 评论
Efficient elicitation of annotations for human evaluation of machine translation  9
Efficient elicitation of annotations for human evaluation of...
收藏 引用
9th Workshop on Statistical Machine Translation, WMT 2014 at the 52nd Conference of the Associationfor Computational Linguistics, ACL 2014
作者: Sakaguchi, Keisuke Post, Matt Van Durme, Benjamin Center for Language and Speech Processing United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
A main output of the annual Workshop on Statistical Machine Translation (WMT) is a ranking of the systems that participated in its shared translation tasks, produced by aggregating pairwise sentencelevel comparisons c... 详细信息
来源: 评论
Is the Stanford Dependency Representation Semantic?  2
Is the Stanford Dependency Representation Semantic?
收藏 引用
2nd Workshop on EVENTS: Definition, Detection, Coreference, and Representation, EVENTS 2014 at the 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014
作者: Rudinger, Rachel Van Durme, Benjamin Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
The Stanford Dependencies are a deep syntactic representation that are widely used for semantic tasks, like Recognizing Textual Entailment. But do they capture all of the semantic information a meaning representation ... 详细信息
来源: 评论
Augmenting FrameNet Via PPDB  2
Augmenting FrameNet Via PPDB
收藏 引用
2nd Workshop on EVENTS: Definition, Detection, Coreference, and Representation, EVENTS 2014 at the 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014
作者: Rastogi, Pushpendre Van Durme, Benjamin Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
FrameNet is a lexico-semantic dataset that embodies the theory of frame semantics. Like other semantic databases, FrameNet is incomplete. We augment it via the paraphrase database, PPDB, and gain a threefold increase ...
来源: 评论
Low-resource open vocabulary keyword search using point process models  15
Low-resource open vocabulary keyword search using point proc...
收藏 引用
15th Annual Conference of the International speech Communication Association: Celebrating the Diversity of Spoken languages, INTERspeech 2014
作者: Liu, Chunxi Jansen, Aren Chen, Guoguo Kintzley, Keith Trmal, Jan Khudanpur, Sanjeev Center for Language and Speech Processing Department of Electrical and Computer Engineering United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
The point process model (PPM) for keyword search is a whole-word parametric modeling framework based on the timing of phonetic events rather than the evolution of frame-level phonetic likelihoods. Recent progress in P... 详细信息
来源: 评论
Combination of FST and CN search in Spoken Term Detection  15
Combination of FST and CN search in Spoken Term Detection
收藏 引用
15th Annual Conference of the International speech Communication Association: Celebrating the Diversity of Spoken languages, INTERspeech 2014
作者: Chiu, Justin Wang, Yun Trmal, Jan Povey, Daniel Chen, Guoguo Rudnicky, Alexander Language Technologies Institute Carnegie Mellon University PittsburghPA United States Center for Language and Speech Processing and Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
Spoken Term Detection (STD) focuses on finding instances of a particular spoken word or phrase in an audio corpus. Most STD systems have a two-step pipeline, ASR followed by search. Two approaches to search are common... 详细信息
来源: 评论
Worldwide Influenza Surveillance through Twitter  29
Worldwide Influenza Surveillance through Twitter
收藏 引用
29th AAAI Conference on Artificial Intelligence, AAAI 2015
作者: Paul, Michael J. Dredze, Mark Broniatowski, David A. Generous, Nicholas Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD21218 United States Department of Engineering Management and Systems Engineering George Washington University WashingtonDC20052 United States Los Alamos National Laboratory Defense Systems and Analysis Division Los AlamosNM87545 United States
We evaluate the performance of Twitter-based influenza surveillance in ten English-speaking countries across four continents. We find that tweets are positively correlated with existing surveillance data provided by g... 详细信息
来源: 评论
Leveraging big data to improve health awareness campaigns: A novel evaluation of the great American smokeout
收藏 引用
JMIR Public Health and Surveillance 2016年 第1期2卷 e16页
作者: Ayers, John W. Westmaas, J. Lee Leas, Eric C. Benton, Adrian Chen, Yunqi Dredze, Mark Althouse, Benjamin M. Graduate School of Public Health San Diego State University Chula Vista CA United States American Cancer Society Behavioral Research Center Atlanta GA United States University of California San Diego School of Medicine San Diego CA United States Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD United States Bryn Mawr College Bryn Mawr College Philadelphia PA United States Santa Fe Institute Santa Fe NM United States New Mexico State University Las Cruces NM United States
Background: Awareness campaigns are ubiquitous, but little is known about their potential effectiveness because traditional evaluations are often unfeasible. For 40 years, the “Great American Smokeout” (GASO) has en... 详细信息
来源: 评论
Quantifying Mental Health Signals in Twitter
Quantifying Mental Health Signals in Twitter
收藏 引用
2014 Workshop on Computational Linguistics and Clinical Psychology From Linguistic Signal to Clinical Reality, CLPsych 2014 at the 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014
作者: Coppersmith, Glen Dredze, Mark Harman, Craig Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD United States
The ubiquity of social media provides a rich opportunity to enhance the data available to mental health clinicians and researchers, enabling a better-informed and better-equipped mental health field. We present analys... 详细信息
来源: 评论
Measuring post traumatic stress disorder in twitter  8
Measuring post traumatic stress disorder in twitter
收藏 引用
8th International Conference on Weblogs and Social Media, ICWSM 2014
作者: Coppersmith, Glen Harman, Craig Dredze, Mark Human Language Technology Center of Excellence Johns Hopkins University BalitmoreMD United States
Traditional mental health studies rely on information primarily collected through personal contact with a health care professional. Recent work has shown the utility of social media data for studying depression, but t... 详细信息
来源: 评论