咨询与建议

限定检索结果

文献类型

  • 315 篇 会议
  • 126 篇 期刊文献

馆藏范围

  • 441 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 315 篇 工学
    • 236 篇 计算机科学与技术...
    • 206 篇 软件工程
    • 98 篇 信息与通信工程
    • 24 篇 生物工程
    • 17 篇 控制科学与工程
    • 17 篇 化学工程与技术
    • 16 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 10 篇 生物医学工程(可授...
    • 7 篇 机械工程
    • 7 篇 建筑学
    • 6 篇 安全科学与工程
    • 5 篇 土木工程
    • 5 篇 农业工程
  • 165 篇 理学
    • 118 篇 物理学
    • 54 篇 数学
    • 28 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 17 篇 化学
    • 10 篇 系统科学
  • 78 篇 管理学
    • 69 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 14 篇 医学
    • 12 篇 基础医学(可授医学...
    • 12 篇 临床医学
    • 7 篇 药学(可授医学、理...
  • 9 篇 法学
    • 7 篇 社会学
  • 8 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 5 篇 教育学
  • 5 篇 农学
    • 5 篇 作物学
  • 1 篇 经济学

主题

  • 44 篇 speech recogniti...
  • 30 篇 speech
  • 30 篇 training
  • 18 篇 acoustics
  • 14 篇 machine translat...
  • 12 篇 decoding
  • 12 篇 social networkin...
  • 12 篇 speaker recognit...
  • 11 篇 computational mo...
  • 11 篇 semantics
  • 10 篇 conferences
  • 10 篇 hidden markov mo...
  • 9 篇 speech processin...
  • 9 篇 computational li...
  • 9 篇 embeddings
  • 8 篇 training data
  • 8 篇 feature extracti...
  • 8 篇 natural language...
  • 8 篇 pipelines
  • 7 篇 lattices

机构

  • 88 篇 human language t...
  • 54 篇 human language t...
  • 43 篇 center for langu...
  • 21 篇 center for langu...
  • 20 篇 human language t...
  • 20 篇 human language t...
  • 18 篇 center for langu...
  • 15 篇 human language t...
  • 13 篇 center for langu...
  • 12 篇 human language t...
  • 11 篇 human language t...
  • 10 篇 johns hopkins un...
  • 9 篇 johns hopkins un...
  • 8 篇 human language t...
  • 7 篇 human language t...
  • 7 篇 department of co...
  • 7 篇 xiaomi corp.
  • 6 篇 computer and inf...
  • 6 篇 xiaomi corporati...
  • 6 篇 center for langu...

作者

  • 64 篇 dredze mark
  • 50 篇 khudanpur sanjee...
  • 43 篇 van durme benjam...
  • 30 篇 dehak najim
  • 27 篇 sanjeev khudanpu...
  • 21 篇 post matt
  • 20 篇 mcnamee paul
  • 20 篇 hermansky hynek
  • 20 篇 callison-burch c...
  • 19 篇 villalba jesús
  • 18 篇 povey daniel
  • 16 篇 duh kevin
  • 16 篇 mayfield james
  • 15 篇 zelasko piotr
  • 15 篇 daniel povey
  • 15 篇 watanabe shinji
  • 14 篇 wiesner matthew
  • 14 篇 andrews nicholas
  • 13 篇 paul michael j.
  • 13 篇 mccree alan

语言

  • 431 篇 英文
  • 10 篇 其他
检索条件"机构=Center for Language and Speech Processing and Human Language Technology Center of Excellence"
441 条 记 录,以下是291-300 订阅
排序:
Broadly Improving User Classification via Communication-Based Name and Location Clustering on Twitter  2
Broadly Improving User Classification via Communication-Base...
收藏 引用
2nd Workshop on Computational Linguistics for Literature, CLfL 2013 at the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL-HLT 2013
作者: Bergsma, Shane Dredze, Mark van Durme, Benjamin Wilson, Theresa Yarowsky, David Department of Computer Science and Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD21218 United States
Hidden properties of social media users, such as their ethnicity, gender, and location, are often reflected in their observed attributes, such as their first and last names. Furthermore, users who communicate with eac... 详细信息
来源: 评论
PARMA: A predicate argument aligner
PARMA: A predicate argument aligner
收藏 引用
51st Annual Meeting of the Association for Computational Linguistics, ACL 2013
作者: Wolfe, Travis Van Durme, Benjamin Dredze, Mark Andrews, Nicholas Beller, Charley Callison-Burch, Chris De Young, Jay Snyder, Justin Weese, Jonathan Xu, Tan Yao, Xuchen Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD United States University of Maryland College Park MD United States
We introduce PARMA, a system for cross-document, semantic predicate and argument alignment. Our system combines a number of linguistic resources familiar to researchers in areas such as recognizing textual entailment ... 详细信息
来源: 评论
What's in a domain? multi-domain learning for multi-Attribute data
What's in a domain? multi-domain learning for multi-Attribut...
收藏 引用
2013 Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL HLT 2013
作者: Joshi, Mahesh Dredze, Mark Cohen, William W. Rosé, Carolyn P. School of Computer Science Carnegie Mellon University PittsburghPA15213 United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD21211 United States
Multi-Domain learning assumes that a single metadata attribute is used in order to divide the data into so-called domains. However, real-world datasets often have multiple metadata attributes that can divide the data ... 详细信息
来源: 评论
What’s in a Domain? Multi-Domain Learning for Multi-Attribute Data  2
What’s in a Domain? Multi-Domain Learning for Multi-Attribu...
收藏 引用
2nd Workshop on Computational Linguistics for Literature, CLfL 2013 at the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL-HLT 2013
作者: Joshi, Mahesh Dredze, Mark Cohen, William W. Rosé, Carolyn P. School of Computer Science Carnegie Mellon University PittsburghPA15213 United States Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD21211 United States
Multi-Domain learning assumes that a single metadata attribute is used in order to divide the data into so-called domains. However, real-world datasets often have multiple metadata attributes that can divide the data ... 详细信息
来源: 评论
Seeded graph matching for correlated Erdös-Rényi graphs
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2014年 第1期15卷
作者: Kevin Murphy Bernhard Schölkopf Vince Lyzinski Donniell E. Fishkind Carey E. Priebe Google Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD Department of Applied Mathematics and Statistics Johns Hopkins University Baltimore MD
Graph matching is an important problem in machine learning and pattern recognition. Herein, we present theoretical and practical results on the consistency of graph matching for estimating a latent alignment function ... 详细信息
来源: 评论
UMBC_EBIQUITY-CORE: Semantic Textual Similarity Systems  2
UMBC_EBIQUITY-CORE: Semantic Textual Similarity Systems
收藏 引用
2nd Joint Conference on Lexical and Computational Semantics, *SEM 2013
作者: Han, Lushan Kashyap, Abhay Finin, Tim Mayfield, James Weese, Jonathan Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD21211 United States Computer Science and Electrical Engineering University of Maryland Baltimore County BaltimoreMD21250 United States
We describe three semantic text similarity systems developed for the ∗SEM 2013 STS shared task and the results of the corresponding three runs. All of them shared a word similarity feature that combined LSA word simil... 详细信息
来源: 评论
KELVIN: a tool for automated knowledge base construction
KELVIN: a tool for automated knowledge base construction
收藏 引用
2013 Annual Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL-HLT 2013 - Demonstration Session
作者: McNamee, Paul Mayfield, James Finin, Tim Oates, Tim Lawrie, Dawn Xu, Tan Oard, Douglas W. Johns Hopkins University Human Language Technology Center of Excellence United States University of Maryland Baltimore County United States Loyola University Maryland United States University of Maryland College Park United States
We present KELVIN, an automated system for processing a large text corpus and distilling a knowledge base about persons, organizations, and locations. We have tested the KELVIN system on several corpora, including: (a... 详细信息
来源: 评论
Typicality and Object Reference  35
Typicality and Object Reference
收藏 引用
35th Annual Meeting of the Cognitive Science Society - Cooperative Minds: Social Interaction and Group Dynamics, CogSci 2013
作者: Mitchell, Margaret Reiter, Ehud van Deemter, Kees Human Language Technology Center of Excellence Johns Hopkins University BaltimoreMD21211 United States Computing Science Department University of Aberdeen Scotland AberdeenAB24 3FX United Kingdom
Does the typicality of an object affect how we identify it? When we produce initial reference to a visible object, we are influenced by a variety of factors, including what is visually salient (bottom-up influences) a... 详细信息
来源: 评论
Comparing and evaluating semantic data automatically extracted from text
Comparing and evaluating semantic data automatically extract...
收藏 引用
2013 AAAI Fall Symposium
作者: Lawrie, Dawn Finin, Tim Mayfield, James McNamee, Paul Computer Science Department Loyola University Maryland Baltimore MD United States University of Maryland Baltimore County Baltimore MD United States Johns Hopkins University Human Language Technology Center of Excellence Baltimore MD United States
One way to obtain large amounts of semantic data is to extract facts from the vast quantities of text that is now available on-line. The relatively low accuracy of current information extraction techniques introduces ... 详细信息
来源: 评论
What affects patient (dis)satisfaction? Analyzing online doctor ratings with a joint topic-sentiment model
What affects patient (dis)satisfaction? Analyzing online doc...
收藏 引用
2013 AAAI Workshop
作者: Paul, Michael J. Wallace, Byron C. Dredze, Mark Dept. of Computer Science Johns Hopkins University Baltimore MD 21218 United States Center for Evidence-based Medicine Brown University Providence RI 02903 United States Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD 21211 United States
We analyze patient reviews of doctors using a novel probabilistic joint model of topic and sentiment based on factorial LDA (Paul and Dredze 2012). We leverage this model to exploit a small set of previously annotated... 详细信息
来源: 评论