咨询与建议

限定检索结果

文献类型

  • 315 篇 会议
  • 126 篇 期刊文献

馆藏范围

  • 441 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 315 篇 工学
    • 236 篇 计算机科学与技术...
    • 206 篇 软件工程
    • 98 篇 信息与通信工程
    • 24 篇 生物工程
    • 17 篇 控制科学与工程
    • 17 篇 化学工程与技术
    • 16 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 10 篇 生物医学工程(可授...
    • 7 篇 机械工程
    • 7 篇 建筑学
    • 6 篇 安全科学与工程
    • 5 篇 土木工程
    • 5 篇 农业工程
  • 165 篇 理学
    • 118 篇 物理学
    • 54 篇 数学
    • 28 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 17 篇 化学
    • 10 篇 系统科学
  • 78 篇 管理学
    • 69 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 14 篇 医学
    • 12 篇 基础医学(可授医学...
    • 12 篇 临床医学
    • 7 篇 药学(可授医学、理...
  • 9 篇 法学
    • 7 篇 社会学
  • 8 篇 文学
    • 6 篇 中国语言文学
    • 5 篇 外国语言文学
  • 5 篇 教育学
  • 5 篇 农学
    • 5 篇 作物学
  • 1 篇 经济学

主题

  • 44 篇 speech recogniti...
  • 30 篇 speech
  • 30 篇 training
  • 18 篇 acoustics
  • 14 篇 machine translat...
  • 12 篇 decoding
  • 12 篇 social networkin...
  • 12 篇 speaker recognit...
  • 11 篇 computational mo...
  • 11 篇 semantics
  • 10 篇 conferences
  • 10 篇 hidden markov mo...
  • 9 篇 speech processin...
  • 9 篇 computational li...
  • 9 篇 embeddings
  • 8 篇 training data
  • 8 篇 feature extracti...
  • 8 篇 natural language...
  • 8 篇 pipelines
  • 7 篇 lattices

机构

  • 88 篇 human language t...
  • 54 篇 human language t...
  • 43 篇 center for langu...
  • 21 篇 center for langu...
  • 20 篇 human language t...
  • 20 篇 human language t...
  • 18 篇 center for langu...
  • 15 篇 human language t...
  • 13 篇 center for langu...
  • 12 篇 human language t...
  • 11 篇 human language t...
  • 10 篇 johns hopkins un...
  • 9 篇 johns hopkins un...
  • 8 篇 human language t...
  • 7 篇 human language t...
  • 7 篇 department of co...
  • 7 篇 xiaomi corp.
  • 6 篇 computer and inf...
  • 6 篇 xiaomi corporati...
  • 6 篇 center for langu...

作者

  • 64 篇 dredze mark
  • 50 篇 khudanpur sanjee...
  • 43 篇 van durme benjam...
  • 30 篇 dehak najim
  • 27 篇 sanjeev khudanpu...
  • 21 篇 post matt
  • 20 篇 mcnamee paul
  • 20 篇 hermansky hynek
  • 20 篇 callison-burch c...
  • 19 篇 villalba jesús
  • 18 篇 povey daniel
  • 16 篇 duh kevin
  • 16 篇 mayfield james
  • 15 篇 zelasko piotr
  • 15 篇 daniel povey
  • 15 篇 watanabe shinji
  • 14 篇 wiesner matthew
  • 14 篇 andrews nicholas
  • 13 篇 paul michael j.
  • 13 篇 mccree alan

语言

  • 432 篇 英文
  • 9 篇 其他
检索条件"机构=Center for Language and Speech Processing and Human Language Technology Center of Excellence"
441 条 记 录,以下是341-350 订阅
排序:
Name Phylogeny: A Generative Model of String Variation  12
Name Phylogeny: A Generative Model of String Variation
收藏 引用
Conference on Empirical Methods in Natural language processing
作者: Nicholas Andrews Jason Eisner Mark Dredze Department of Computer Science and Human Language Technology Center of Excellence Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 USA
Many linguistic and textual processes involve transduc-tion of strings. We show how to learn a stochastic transducer from an unorganized collection of strings (rather than string pairs). The role of the transducer is ... 详细信息
来源: 评论
Joshua 3.0: Syntax-based Machine Translation with the Thrax Grammar Extractor  6
Joshua 3.0: Syntax-based Machine Translation with the Thrax ...
收藏 引用
6thWorkshop on Statistical Machine Translation, WMT 2011
作者: Weese, Jonathan Ganitkevitch, Juri Callison-Burch, Chris Post, Matt Lopez, Adam Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States
We present progress on Joshua, an open-source decoder for hierarchical and syntax-based machine translation. The main focus is describing Thrax, a flexible, open source synchronous context-free grammar extractor. Thra... 详细信息
来源: 评论
Malpractice and malcontent: Analyzing medical complaints in twitter
Malpractice and malcontent: Analyzing medical complaints in ...
收藏 引用
2012 AAAI Fall Symposium
作者: Nakhasi, Atul Passarella, Ralph J. Bell, Sarah G. Paul, Michael J. Dredze, Mark Pronovost, PeterJ Johns Hopkins University School of Medicine Johns Hopkins University Baltimore MD United States Departments of Anesthesiology/Critical Care Medicine and Surgery Johns Hopkins University Baltimore MD United States Department of Computer Science and Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD United States University of Michigan Medical School Ann Arbor MI United States
来源: 评论
Efficient spoken term discovery using randomized algorithms
Efficient spoken term discovery using randomized algorithms
收藏 引用
2011 IEEE Workshop on Automatic speech Recognition and Understanding, ASRU 2011
作者: Jansen, Aren Van Durme, Benjamin Human Language Technology Center of Excellence Center for Language and Speech Processing Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 United States
Spoken term discovery is the task of automatically identifying words and phrases in speech data by searching for long repeated acoustic patterns. Initial solutions relied on exhaustive dynamic time warping-based searc... 详细信息
来源: 评论
New ℌ∞ bounds for the recursive least squares algorithm exploiting input structure
New ℌ∞ bounds for the recursive least squares algorithm ex...
收藏 引用
International Conference on Acoustics, speech, and Signal processing (ICASSP)
作者: Koby Crammer Alex Kulesza Mark Dredze Department of Electrical Engineering Technion-Israel Institute of Technology Haifa Israel Department of Computer and Information Science University of Pennsylvania Philadelphia PA USA Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD USA
The recursive least squares (RLS) algorithm is well known and has been widely used for many years. Most analyses of RLS have assumed statistical properties of the data or the noise process, but recent robust ℌ ∞ ana... 详细信息
来源: 评论
Bootstrapping a spoken language identification system using unsupervised integrated sensing and processing decision trees
Bootstrapping a spoken language identification system using ...
收藏 引用
2011 IEEE Workshop on Automatic speech Recognition and Understanding, ASRU 2011
作者: Huang, Shuai Karakos, Damianos Coppersmith, Glen A. Church, Kenneth W. Siniscalchi, Sabato Marco Center for Language and Speech Processing Johns Hopkins University United States Human Language Technology Center of Excellence Johns Hopkins University United States Kore University of Enna Enna Italy
In many inference and learning tasks, collecting large amounts of labeled training data is time consuming and expensive, and oftentimes impractical. Thus, being able to efficiently use small amounts of labeled data wi... 详细信息
来源: 评论
WikiTopics: What is Popular on Wikipedia and Why  11
WikiTopics: What is Popular on Wikipedia and Why
收藏 引用
Workshop on Automatic Summarization for Different Genres, Media and languages
作者: Byung Gyu Ahn Benjamin Van Durme Chris Callison-Burch Center for Language and Speech Processing Center for Language and Speech Processing Human Language Technology Center of Excellence Johns Hopkins University
We establish a novel task in the spirit of news summarization and topic detection and tracking (TDT): daily determination of the topics newly popular with Wikipedia readers. Central to this effort is a new public data... 详细信息
来源: 评论
Efficient discriminative training of long-span language models
Efficient discriminative training of long-span language mode...
收藏 引用
IEEE Workshop on Automatic speech Recognition and Understanding
作者: Ariya Rastrow Mark Dredze Sanjeev Khudanpur Human Language Technology Center of Excellence Center for Language and Speech Processing Johns Hopkins University Baltimore MD USA
Long-span language models, such as those involving syntactic dependencies, produce more coherent text than their n-gram counterparts. However, evaluating the large number of sentence-hypotheses in a packed representat... 详细信息
来源: 评论
Efficient spoken term discovery using randomized algorithms
Efficient spoken term discovery using randomized algorithms
收藏 引用
IEEE Workshop on Automatic speech Recognition and Understanding
作者: Aren Jansen Benjamin Van Durme Human Language Technology Center of Excellence & The Center for Language and Speech Processing Johns Hopkins University Baltimore MD USA
Spoken term discovery is the task of automatically identifying words and phrases in speech data by searching for long repeated acoustic patterns. Initial solutions relied on exhaustive dynamic time warping-based searc... 详细信息
来源: 评论
Adapting n-gram maximum entropy language models with conditional entropy regularization
Adapting n-gram maximum entropy language models with conditi...
收藏 引用
IEEE Workshop on Automatic speech Recognition and Understanding
作者: Ariya Rastrow Mark Dredze Sanjeev Khudanpur Human Language Technology Center of Excellence Center for Language and Speech Processing Johns Hopkins University Baltimore MD USA
Accurate estimates of language model parameters are critical for building quality text generation systems, such as automatic speech recognition. However, text training data for a domain of interest is often unavailabl... 详细信息
来源: 评论