咨询与建议

限定检索结果

文献类型

  • 10 篇 会议
  • 6 篇 期刊文献

馆藏范围

  • 16 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12 篇 工学
    • 8 篇 计算机科学与技术...
    • 4 篇 信息与通信工程
    • 4 篇 软件工程
    • 2 篇 水利工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 8 篇 理学
    • 3 篇 数学
    • 2 篇 物理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 天文学
    • 1 篇 地理学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
    • 1 篇 生物学
    • 1 篇 系统科学
  • 4 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 2 篇 图书情报与档案管...
    • 1 篇 工商管理
  • 2 篇 教育学
    • 2 篇 教育学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...

主题

  • 2 篇 computer aided l...
  • 1 篇 regression analy...
  • 1 篇 electroencephalo...
  • 1 篇 inner-european b...
  • 1 篇 word cloud
  • 1 篇 nlp
  • 1 篇 signal analysis
  • 1 篇 information mana...
  • 1 篇 low-dose compute...
  • 1 篇 unsupervised clu...
  • 1 篇 settlement patte...
  • 1 篇 social network g...
  • 1 篇 chinese-based fo...
  • 1 篇 semantics
  • 1 篇 genetic algorith...
  • 1 篇 spatial homogene...
  • 1 篇 low-rank imation...
  • 1 篇 kronecker-basis-...
  • 1 篇 water resources
  • 1 篇 misconceptions m...

机构

  • 2 篇 center for compu...
  • 2 篇 center for compu...
  • 1 篇 college of compu...
  • 1 篇 data and signal ...
  • 1 篇 department of el...
  • 1 篇 german research ...
  • 1 篇 department of ap...
  • 1 篇 electrical and c...
  • 1 篇 institute of inf...
  • 1 篇 michigan state u...
  • 1 篇 program universi...
  • 1 篇 scientific data ...
  • 1 篇 department of ar...
  • 1 篇 department of co...
  • 1 篇 department of in...
  • 1 篇 national center ...
  • 1 篇 department of co...
  • 1 篇 stevens institut...
  • 1 篇 education planni...
  • 1 篇 howard universit...

作者

  • 2 篇 leusch gregor
  • 2 篇 habash nizar
  • 2 篇 el kholy ahmed
  • 2 篇 sawaf hassan
  • 2 篇 matusov evgeny
  • 1 篇 wentling tim
  • 1 篇 huaxuan hu
  • 1 篇 hannes taubenböc...
  • 1 篇 abecker andreas
  • 1 篇 doglioni caterin...
  • 1 篇 psomopoulos foti...
  • 1 篇 brinson l. cathe...
  • 1 篇 peijin li
  • 1 篇 edward byers
  • 1 篇 auvil loretta s.
  • 1 篇 blaiszik ben
  • 1 篇 zhaosong lu
  • 1 篇 giammar dan
  • 1 篇 huerta e.a.
  • 1 篇 chaudhuri kamali...

语言

  • 15 篇 英文
  • 1 篇 其他
检索条件"机构=Center for Learning Systems and Applications"
16 条 记 录,以下是1-10 订阅
排序:
A NONLOCAL KRONECKER-BASIS-REPRESENTATION METHOD FOR LOW-DOSE CT SINOGRAM RECOVERY
收藏 引用
Journal of Computational Mathematics 2024年 第4期42卷 1080-1108页
作者: Jian Lu Huaxuan Hu Yuru Zou Zhaosong Lu Xiaoxia Liu Keke Zu Lin Li Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and StatisticsShenzhen UniversityShenzhen 518060China National Center for Applied Mathematics Shenzhen(NCAMS) Shenzhen 518055China Department of Industrial and Systems Engineering University of Minnesota Twin CitiesMinneapolisMN55455USA Department of Applied Mathematics The Hong Kong Polytechnic UniversityHong Kong SARChina School of Electronic Engineering Xidian UniversityXi'an 710071China
Low-dose computed tomography(LDCT)contains the mixed noise of Poisson and Gaus-sian,which makes the image reconstruction a challenging *** order to describe the statistical characteristics of the mixed noise,we adopt ... 详细信息
来源: 评论
Urban Patterns from Space: A Remote Sensing Based Comparison Between France and Germany
收藏 引用
KN - Journal of Cartography and Geographic Information 2024年 第3期74卷 233-249页
作者: Schmitt, Andreas Haselmayr, Teresa Taubenböck, Hannes Institute for Applications of Machine Learning and Intelligent Systems (IAMLIS) Hochschule München University of Applied Sciences Lothstraße 34 Bavaria Munich 80335 Germany Geoinformatics Department Hochschule München University of Applied Sciences Karlstraße 6 Bavaria Munich 80333 Germany Earth Observation Center (EOC) German Aerospace Center (DLR) Oberpfaffenhofen Bavaria Weßling 82234 Germany Institute for Geography and Geology Julius-Maximilians-University of Würzburg Am Hubland Bavaria Würzburg 97074 Germany
This article presents two novel methods on how to derive and visualise settlement patterns from space: a non-parametric approach called multi-scale homogeneity and a parametric, unsupervised approach known as hierarch... 详细信息
来源: 评论
Correlation between remotely sensed solid waste on streets and socioeconomic class of an urban area
Correlation between remotely sensed solid waste on streets a...
收藏 引用
Urban Remote Sensing Joint Event
作者: Yrneh Zarit Ulloa Torrealba Dominik Neumayer Andreas Schmitt Hannes Taubenböck Munich University of Applied Sciences Munich German Aerospace Center (DLR) Earth Observation Center (EOC) Oberpfaffenhofen & University of Wuerzburg Wuerzburg Germany Munich University of Applied Sciences Munich Germany Institute for Applications of Machine Learning and Intelligent Systems (IAMLIS) Munich University of Applied Sciences Munich Germany
Solid waste dumped on the streets affects human hygiene, well-being, and increases deprivation. This happens as result of a failure in the solid waste management of a city. This is especially observed in informal poor...
来源: 评论
InfoFlowNet: A Multi-head Attention-based Self-supervised learning Model with Surrogate Approach for Uncovering Brain Effective Connectivity
arXiv
收藏 引用
arXiv 2023年
作者: Chuang, Chun-Hsiang Fang, Shao-Xun Huang, Chih-Sheng Ding, Weiping Research Center for Education and Mind Sciences College of Education National Tsing Hua University Hsinchu Taiwan Institute of Information Systems and Applications College of Electrical Engineering and Computer Science National Tsing Hua University Hsinchu Taiwan Department of Education and Learning Technology National Tsing Hua University Hsinchu Taiwan Department of Computer Science and Engineering National Taiwan Ocean University Keelung Taiwan Department of Artificial Intelligence Research and Development Elan Microelectronics Corporation Hsinchu Taiwan College of Artificial Intelligence and Green Energy National Yang Ming Chiao Tung University Hsinchu Taiwan College of Electrical Engineering and Computer Science National Taipei University of Technology Hsinchu Taiwan School of Information Science and Technology Nantong University Nantong China Institute of Information Systems and Applications College of Electrical Engineering and Computer Science NTHU Treasure Taipei Chapter of IEEE Computational Intelligence Society Taiwan
Deciphering brain network topology can enhance the depth of neuroscientific knowledge and facilitate the development of neural engineering methods. Effective connectivity, a measure of brain network dynamics, is parti... 详细信息
来源: 评论
Using deep learning to generate key variables in global mitigation scenarios
收藏 引用
Nature Climate Change 2025年 1-9页
作者: Peijin Li Peijie Zhou Rongqi Zhu Yang Ou Haewon McJeon Edward Byers Center for Machine Learning Research and Center for Data Science Peking University Beijing China AI for Science Institute Beijing China National Engineering Laboratory for Big Data Analysis and Applications Beijing China College of Environmental Sciences and Engineering Peking University Beijing China Institute of Carbon Neutrality Peking University Beijing China Graduate School of Green Growth and Sustainability Korea Advanced Institute of Science and Technology Daejeon Republic of Korea International Institute for Applied Systems Analysis Laxenburg Austria
Integrated assessment models (IAMs) are the dominant tools for projecting mitigation scenarios. However, IAM-based scenarios often face challenges such as modelling biases and large computational burden. Here we devel...
来源: 评论
SE(3)-equivariant prediction of molecular wavefunctions and electronic densities  21
SE(3)-equivariant prediction of molecular wavefunctions and ...
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing systems
作者: Oliver T. Unke Mihail Bogojeski Michael Gastegger Mario Geiger Tess Smidt Klaus-Robert Müller Machine Learning Group Technische Universität Berlin Berlin Germany and DFG Cluster of Excellence "Unifying Systems in Catalysis" (UniSysCat) Technische Universität Berlin Berlin Germany and BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin Germany and Google Research Brain Team Berlin Germany Machine Learning Group Technische Universität Berlin Berlin Germany and BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin Germany Machine Learning Group Technische Universität Berlin Berlin Germany and DFG Cluster of Excellence "Unifying Systems in Catalysis" (UniSysCat) Technische Universität Berlin Berlin Germany and BASLEARN – TU Berlin/BASF Joint Lab for Machine Learning Technische Universität Berlin Berlin Germany Institute of Physics École Polytechnique Fédérale de Lausanne Lausanne Switzerland Computational Research Division Lawrence Berkeley National Laboratory Berkeley CA and Center for Advanced Mathematics for Energy Research Applications (CAMERA) Lawrence Berkeley National Laboratory Berkeley CA Machine Learning Group Technische Universität Berlin Berlin Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul Korea and Max Planck Institute for Informatics Stuhlsatzenhausweg 66123 Saarbrücken Germany and BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin Germany and Google Research Brain Team Berlin Germany
Machine learning has enabled the prediction of quantum chemical properties with high accuracy and efficiency, allowing to bypass computationally costly ab initio calculations. Instead of training on a fixed set of pro...
来源: 评论
Serial-EMD: Fast empirical mode decomposition method for multi-dimensional signals based on serialization
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Jin Feng, Fan Marti-Puig, Pere Caiafa, Cesar F. Sun, Zhe Duan, Feng Solé-Casals, Jordi College of Computer Science Nankai University Tianjin300071 China College of Artificial Intelligence Nankai University Tianjin300350 China Data and Signal Processing Group University of Vic—Central University of Catalonia Catalonia Vic08500 Spain Instituto Argentino de Radioastronomía CONICET CCT La Plata CIC-PBA UNLP V. Elisa1894 Argentina Tensor Learning Team Center for Advanced Intelligence Project RIKEN Tokyo103-0027 Japan Computational Engineering Applications Unit Head Office for Information Systems and Cybersecurity RIKEN Saitama351-0198 Japan
Empirical mode decomposition (EMD) has developed into a prominent tool for adaptive, scale-based signal analysis in various fields like robotics, security and biomedical engineering. Since the dramatic increase in amo... 详细信息
来源: 评论
Misconceptions Mining and Visualizations for Chinese-Based MOOCs Forum Based on NLP  2
Misconceptions Mining and Visualizations for Chinese-Based M...
收藏 引用
2017 IEEE 2nd International Conference on Big Data Analysis(ICBDA 2017)
作者: Hao-Hsuan Hsu Nen-Fu Huang So-Chen Chen Chia-An Lee Jian-Wei Tzeng Institute of Information Systems and Applications Tsing Hua University Netxtream Technologies Inc. Department of Computer Science Tsing Hua University Center for Teaching and Learning Development Tsing Hua University
With the popularity of MOOCs(Massive Open Online Courses),massive structured,semi-structured and unstructured data about learning is recorded for further analysis and *** is the direct way for learners to ask question... 详细信息
来源: 评论
FAIR for AI: An interdisciplinary and international community building perspective
arXiv
收藏 引用
arXiv 2022年
作者: Huerta, E.A. Blaiszik, Ben Brinson, L. Catherine Bouchard, Kristofer E. Diaz, Daniel Doglioni, Caterina Duarte, Javier M. Emani, Murali Foster, Ian Fox, Geoffrey Harris, Philip Heinrich, Lukas Jha, Shantenu Katz, Daniel S. Kindratenko, Volodymyr Kirkpatrick, Christine R. Lassila-Perini, Kati Madduri, Ravi K. Neubauer, Mark S. Psomopoulos, Fotis E. Roy, Avik Rübel, Oliver Zhao, Zhizhen Zhu, Ruike Data Science and Learning Division Argonne National Laboratory LemontIL60439 United States Department of Computer Science University of Chicago ChicagoIL60637 United States Globus University of Chicago ChicagoIL60637 United States Department of Mechanical Engineering and Materials Science Duke University DurhamNC27708 United States Scientific Data Division Lawrence Berkeley National Laboratory BerkeleyCA94720 United States Biological Systems & Engineering Lawrence Berkeley National Laboratory BerkeleyCA94720 United States Helen Wills Neuroscience Institute University of California Berkeley BerkeleyCA94720 United States Department of Physics University of California La Jolla San DiegoCA92093 United States Lund University Department of Physics Box 118 Lund221 00 Sweden School of Physics & Astronomy The University of Manchester ManchesterM13 9PL United Kingdom Leadership Computing Facility Argonne National Laboratory LemontIL60439 United States Biocomplexity Institute Department of Computer Science University of Virginia CharlottesvilleVA22904 United States Department of Physics Massachusetts Institute of Technology CambridgeMA02139 United States Technical University Munich Arcisstraße 21 München80333 Germany Computational Science Initiative Brookhaven National Laboratory UptonNY11973 United States Electrical and Computer Engineering Rutgers The State University of New Jersey PiscatawayNJ08854 United States National Center for Supercomputing Applications University of Illinois Urbana-Champaign UrbanaIL61801 United States Department of Computer Science University of Illinois at Urbana-Champaign UrbanaIL61801 United States Department of Electrical & Computer Engineering University of Illinois at Urbana-Champaign UrbanaIL61801 United States School of Information Sciences University of Illinois at Urbana-Champaign UrbanaIL61801 United States San Diego Supercomputer Center University of California La Jolla San DiegoCA
A foundational set of findable, accessible, interoperable, and reusable (FAIR) principles were proposed in 2016 as prerequisites for proper data management and stewardship, with the goal of enabling the reusability of... 详细信息
来源: 评论
Selective Combination of Pivot and Direct Statistical Machine Translation Models  6
Selective Combination of Pivot and Direct Statistical Machin...
收藏 引用
6th International Joint Conference on Natural Language Processing, IJCNLP 2013
作者: El Kholy, Ahmed Habash, Nizar Leusch, Gregor Matusov, Evgeny Sawaf, Hassan Center for Computational Learning Systems Columbia University Science Applications International Corporation eBay Inc
In this paper, we propose a selective combination approach of pivot and direct statistical machine translation (SMT) models to improve translation quality. We work with Persian-Arabic SMT as a case study. We show posi... 详细信息
来源: 评论