咨询与建议

限定检索结果

文献类型

  • 146 篇 期刊文献
  • 75 篇 会议
  • 1 册 图书

馆藏范围

  • 222 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 146 篇 工学
    • 104 篇 计算机科学与技术...
    • 87 篇 软件工程
    • 25 篇 信息与通信工程
    • 25 篇 生物工程
    • 23 篇 生物医学工程(可授...
    • 22 篇 控制科学与工程
    • 17 篇 电气工程
    • 16 篇 光学工程
    • 12 篇 电子科学与技术(可...
    • 8 篇 化学工程与技术
    • 7 篇 机械工程
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 5 篇 仪器科学与技术
    • 5 篇 动力工程及工程热...
    • 5 篇 交通运输工程
  • 94 篇 理学
    • 52 篇 数学
    • 31 篇 生物学
    • 30 篇 物理学
    • 29 篇 统计学(可授理学、...
    • 13 篇 系统科学
    • 7 篇 地球物理学
    • 6 篇 化学
  • 34 篇 管理学
    • 23 篇 图书情报与档案管...
    • 15 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 14 篇 医学
    • 13 篇 临床医学
    • 12 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
    • 6 篇 药学(可授医学、理...
  • 4 篇 经济学
  • 4 篇 农学
  • 3 篇 教育学
  • 2 篇 法学
  • 1 篇 哲学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 11 篇 machine learning
  • 9 篇 reinforcement le...
  • 8 篇 accuracy
  • 7 篇 deep learning
  • 5 篇 contrastive lear...
  • 5 篇 predictive model...
  • 4 篇 cognition
  • 4 篇 image segmentati...
  • 4 篇 benchmarking
  • 4 篇 data models
  • 4 篇 training
  • 3 篇 object detection
  • 3 篇 transformers
  • 3 篇 neural networks
  • 3 篇 data engineering
  • 3 篇 semantics
  • 3 篇 security
  • 3 篇 stochastic syste...
  • 3 篇 biomedical imagi...
  • 3 篇 artificial intel...

机构

  • 24 篇 center for data ...
  • 7 篇 center for machi...
  • 7 篇 college of compu...
  • 7 篇 peng cheng labor...
  • 7 篇 national key lab...
  • 6 篇 center for data ...
  • 6 篇 guangdong key la...
  • 6 篇 key laboratory o...
  • 6 篇 school of data a...
  • 6 篇 the state key la...
  • 6 篇 dortmund data sc...
  • 6 篇 school of comput...
  • 6 篇 key laboratory o...
  • 5 篇 software college...
  • 5 篇 yizhun medical a...
  • 5 篇 tu dortmund univ...
  • 5 篇 school of mathem...
  • 4 篇 collaborative in...
  • 4 篇 informatics inst...
  • 4 篇 national institu...

作者

  • 17 篇 wang liwei
  • 7 篇 wang dong
  • 7 篇 triantafyllopoul...
  • 7 篇 schuller björn w...
  • 6 篇 zhao ziwei
  • 5 篇 zheng wei-shi
  • 5 篇 bakas spyridon
  • 5 篇 zhong han
  • 5 篇 liwei wang
  • 4 篇 yin jianwei
  • 4 篇 müller arthur
  • 4 篇 cai derun
  • 4 篇 li hongwei bran
  • 4 篇 tsangko iosif
  • 4 篇 yu hong-xing
  • 4 篇 andreas triantaf...
  • 4 篇 linguraru marius...
  • 4 篇 di he
  • 4 篇 munteanu alexand...
  • 4 篇 müller emmanuel

语言

  • 194 篇 英文
  • 27 篇 其他
检索条件"机构=Center for Machine Intelligence and Data Science"
222 条 记 录,以下是91-100 订阅
排序:
Optimal bounds for ℓp sensitivity sampling via ℓ2 augmentation  24
Optimal bounds for ℓp sensitivity sampling via ℓ2 augmenta...
收藏 引用
Proceedings of the 41st International Conference on machine Learning
作者: Alexander Munteanu Simon Omlor Dortmund Data Science Center Faculties of Statistics and Computer Science TU Dortmund University Dortmund Germany Faculty of Statistics TU Dortmund University Dortmund Germany and Lamarr-Institute for Machine Learning and Artificial Intelligence Dortmund Germany
data subsampling is one of the most natural methods to approximate a massively large data set by a small representative proxy. In particular, sensitivity sampling received a lot of attention, which samples points prop...
来源: 评论
Turnstile ℓp leverage score sampling with applications  24
Turnstile ℓp leverage score sampling with applications
收藏 引用
Proceedings of the 41st International Conference on machine Learning
作者: Alexander Munteanu Simon Omlor Dortmund Data Science Center Faculties of Statistics and Computer Science TU Dortmund University Dortmund Germany Faculty of Statistics TU Dortmund University Dortmund Germany and Lamarr-Institute for Machine Learning and Artificial Intelligence Dortmund Germany
The turnstile data stream model offers the most flexible framework where data can be manipulated dynamically, i.e., rows, columns, and even single entries of an input matrix can be added, deleted, or updated multiple ...
来源: 评论
On the Effectiveness of Heterogeneous Ensemble Methods for Re-Identification
On the Effectiveness of Heterogeneous Ensemble Methods for R...
收藏 引用
International Conference on machine Learning and Applications (ICMLA)
作者: Simon Klüttermann Jérôme Rutinowski Frederik Polachowski Anh Nguyen Britta Grimme Moritz Roidl Emmanuel Müller TU Dortmund University Dortmund Germany Lamarr Institute for Machine Learning and Artificial Intelligence Dortmund Germany Paderborn University Paderborn Germany Research Center Trustworthy Data Science and Security Dortmund Germany
In this contribution, we introduce a novel ensemble method for the re-identification of industrial entities, using images of chipwood pallets and galvanized metal plates as dataset examples. Our algorithms replace com... 详细信息
来源: 评论
Marine Predators Algorithm for Energy Scheduling Problem Using Renewable Energy
Marine Predators Algorithm for Energy Scheduling Problem Usi...
收藏 引用
Cyber Resilience (ICCR), International Conference on
作者: Sharif Naser Makhadmeh Ammar Kamal Abasi Mohammed Azmi Al-Betar Department of Data Science and Artificial Intelligence University of Petra Amman Jordan Machine Learning Department Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI) Abu Dhabi United Arab Emirates Artificial Intelligence Research Center (AIRC) Ajman University Ajman United Arab Emirates
The Energy Scheduling Problem (ESP) involves scheduling smart home appliances based on electricity pricing schemes. This entails adjusting the timing of operations for these appliances across different periods. The pr... 详细信息
来源: 评论
Universality of kernel random matrices and kernel regression in the quadratic regime
arXiv
收藏 引用
arXiv 2024年
作者: Pandit, Parthe Wang, Zhichao Zhu, Yizhe Center for Machine Intelligence and Data Science Indian Institute of Technology Bombay India Department of Mathematics University of California San Diego United States Department of Mathematics University of Southern California United States
Kernel ridge regression (KRR) is a popular class of machine learning models that has become an important tool for understanding deep learning. Much of the focus has been on studying the proportional asymptotic regime,... 详细信息
来源: 评论
Temporal Knowledge Graph Reasoning via Time-Distributed Representation Learning
Temporal Knowledge Graph Reasoning via Time-Distributed Repr...
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Kangzheng Liu Feng Zhao Guandong Xu Xianzhi Wang Hai Jin National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China Data Science and Machine Intelligence Lab University of Technology Sydney Sydney Australia
Temporal knowledge graph (TKG) reasoning has attracted significant attention. Recent approaches for modeling historical information have led to great advances. However, the problems of time variability and unseen enti... 详细信息
来源: 评论
RETIA: Relation-Entity Twin-Interact Aggregation for Temporal Knowledge Graph Extrapolation
RETIA: Relation-Entity Twin-Interact Aggregation for Tempora...
收藏 引用
International Conference on data Engineering
作者: Kangzheng Liu Feng Zhao Guandong Xu Xianzhi Wang Hai Jin National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China Data Science and Machine Intelligence Lab University of Technology Sydney Sydney Australia
Temporal knowledge graph (TKG) extrapolation aims to predict future unknown events (facts) based on historical information, and has attracted considerable attention due to its great practical significance. Accurate re...
来源: 评论
Mining Negative Temporal Contexts For False Positive Suppression In Real-Time Ultrasound Lesion Detection
arXiv
收藏 引用
arXiv 2023年
作者: Yu, Haojun Li, Youcheng Wu, QuanLin Zhao, Ziwei Chen, Dengbo Wang, Dong Wang, Liwei National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University Beijing China Center of Data Science Peking University Beijing China Center for Machine Learning Research Peking University Beijing China Yizhun Medical AI Co. Ltd Beijing China Guangdong China
During ultrasonic scanning processes, real-time lesion detection can assist radiologists in accurate cancer diagnosis. However, this essential task remains challenging and underexplored. General-purpose real-time obje... 详细信息
来源: 评论
DSRGAN: Explicitly learning disentangled representation of underlying structure and rendering for image generation without tuple supervision
arXiv
收藏 引用
arXiv 2019年
作者: Hao, Guang-Yuan Yu, Hong-Xing Zheng, Wei-Shi School of Data and Computer Science Sun Yat-sen University Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education Collaborative Innovation Center of High Performance Computing Nudt Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou
We focus on explicitly learning disentangled representation for natural image generation, where the underlying spatial structure and the rendering on the structure can be independently controlled respectively, yet usi... 详细信息
来源: 评论
Characterization of exact one-query quantum algorithms
收藏 引用
Physical Review A 2020年 第2期101卷 022325-022325页
作者: Weijiang Chen Zekun Ye Lvzhou Li Institute of Computer Science Theory School of Data and Computer Science Sun Yat-Sen University Guangzhou 510006 China Center for Quantum Computing Peng Cheng Laboratory Shenzhen 518055 China Ministry of Education Key Laboratory of Machine Intelligence and Advanced Computing Sun Yat-Sen University Guangzhou 510006 China
The quantum query model is one of the most important models in quantum computing. Several well-known quantum algorithms are captured by this model, including the Deutsch-Jozsa algorithm, the Simon algorithm, the Grove... 详细信息
来源: 评论