咨询与建议

限定检索结果

文献类型

  • 146 篇 期刊文献
  • 75 篇 会议
  • 1 册 图书

馆藏范围

  • 222 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 146 篇 工学
    • 104 篇 计算机科学与技术...
    • 87 篇 软件工程
    • 25 篇 信息与通信工程
    • 25 篇 生物工程
    • 23 篇 生物医学工程(可授...
    • 22 篇 控制科学与工程
    • 17 篇 电气工程
    • 16 篇 光学工程
    • 12 篇 电子科学与技术(可...
    • 8 篇 化学工程与技术
    • 7 篇 机械工程
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 5 篇 仪器科学与技术
    • 5 篇 动力工程及工程热...
    • 5 篇 交通运输工程
  • 94 篇 理学
    • 52 篇 数学
    • 31 篇 生物学
    • 30 篇 物理学
    • 29 篇 统计学(可授理学、...
    • 13 篇 系统科学
    • 7 篇 地球物理学
    • 6 篇 化学
  • 34 篇 管理学
    • 23 篇 图书情报与档案管...
    • 15 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 14 篇 医学
    • 13 篇 临床医学
    • 12 篇 基础医学(可授医学...
    • 7 篇 公共卫生与预防医...
    • 6 篇 药学(可授医学、理...
  • 4 篇 经济学
  • 4 篇 农学
  • 3 篇 教育学
  • 2 篇 法学
  • 1 篇 哲学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 11 篇 machine learning
  • 9 篇 reinforcement le...
  • 8 篇 accuracy
  • 7 篇 deep learning
  • 5 篇 contrastive lear...
  • 5 篇 predictive model...
  • 4 篇 cognition
  • 4 篇 image segmentati...
  • 4 篇 benchmarking
  • 4 篇 data models
  • 4 篇 training
  • 3 篇 object detection
  • 3 篇 transformers
  • 3 篇 neural networks
  • 3 篇 data engineering
  • 3 篇 semantics
  • 3 篇 security
  • 3 篇 stochastic syste...
  • 3 篇 biomedical imagi...
  • 3 篇 artificial intel...

机构

  • 24 篇 center for data ...
  • 7 篇 center for machi...
  • 7 篇 college of compu...
  • 7 篇 peng cheng labor...
  • 7 篇 national key lab...
  • 6 篇 center for data ...
  • 6 篇 guangdong key la...
  • 6 篇 key laboratory o...
  • 6 篇 school of data a...
  • 6 篇 the state key la...
  • 6 篇 dortmund data sc...
  • 6 篇 school of comput...
  • 6 篇 key laboratory o...
  • 5 篇 software college...
  • 5 篇 yizhun medical a...
  • 5 篇 tu dortmund univ...
  • 5 篇 school of mathem...
  • 4 篇 collaborative in...
  • 4 篇 informatics inst...
  • 4 篇 national institu...

作者

  • 17 篇 wang liwei
  • 7 篇 wang dong
  • 7 篇 triantafyllopoul...
  • 7 篇 schuller björn w...
  • 6 篇 zhao ziwei
  • 5 篇 zheng wei-shi
  • 5 篇 bakas spyridon
  • 5 篇 zhong han
  • 5 篇 liwei wang
  • 4 篇 yin jianwei
  • 4 篇 müller arthur
  • 4 篇 cai derun
  • 4 篇 li hongwei bran
  • 4 篇 tsangko iosif
  • 4 篇 yu hong-xing
  • 4 篇 andreas triantaf...
  • 4 篇 linguraru marius...
  • 4 篇 di he
  • 4 篇 munteanu alexand...
  • 4 篇 müller emmanuel

语言

  • 194 篇 英文
  • 27 篇 其他
检索条件"机构=Center for Machine Intelligence and Data Science"
222 条 记 录,以下是61-70 订阅
排序:
Audio Enhancement for Computer Audition—An Iterative Training Paradigm Using Sample Importance
收藏 引用
Journal of Computer science & Technology 2024年 第4期39卷 895-911页
作者: Manuel Milling Shuo Liu Andreas Triantafyllopoulos Ilhan Aslan Björn W.Schuller Chair of Embedded Intelligence for Health Care and Wellbeing University of AugsburgAugsburg 86159Germany Chair of Health Informatics München rechts der IsarTechnical University of MunichMunich 81675Germany Munich Center for Machine Learning Munich 80333Germany Huawei Technologies MunichMunich 80992Germany Munich Data Science Institute Garching 85748Germany Group on Language Audio and MusicImperial College LondonLondon SW72AZU.K.
Neural network models for audio tasks,such as automatic speech recognition(ASR)and acoustic scene classification(ASC),are susceptible to noise contamination for real-life *** improve audio quality,an enhancement modul... 详细信息
来源: 评论
Differentiable and Scalable Generative Adversarial Models for data Imputation (Extended Abstract)  40
Differentiable and Scalable Generative Adversarial Models fo...
收藏 引用
40th IEEE International Conference on data Engineering, ICDE 2024
作者: Wu, Yangyang Wang, Jun Miao, Xiaoye Wang, Wenjia Yin, Jianwei Software College Zhejiang University Ningbo China Academy of Interdisciplinary Studies The Hong Kong University of Science and Technology Hong Kong Hong Kong Center for Data Science Zhejiang University Hangzhou China The State Key Lab of Brain-Machine Intelligence Zhejiang University Hangzhou China Guangzhou China College of Computer Science Zhejiang University Hangzhou China
The dramatically increasing volume of incomplete data makes the imputation models computationally infeasible in many real-life applications. In this paper, we propose an effective scalable imputation system named SCIS... 详细信息
来源: 评论
On the Effectiveness of Heterogeneous Ensemble Methods for Re-identification
arXiv
收藏 引用
arXiv 2024年
作者: Klüttermann, Simon Rutinowski, Jérôme Nguyen, Anh Grimme, Britta Roidl, Moritz Müller, Emmanuel TU Dortmund University Dortmund Germany Lamarr Institute for Machine Learning and Artificial Intelligence Germany Research Center Trustworthy Data Science and Security Germany
In this contribution, we introduce a novel ensemble method for the re-identification of industrial entities, using images of chipwood pallets and galvanized metal plates as dataset examples. Our algorithms replace com... 详细信息
来源: 评论
Smaller Batches, Bigger Gains? Investigating the Impact of Batch Sizes on Reinforcement Learning Based Real-World Production Scheduling
Smaller Batches, Bigger Gains? Investigating the Impact of B...
收藏 引用
International Conference on Emerging Technologies and Factory Automation (ETFA)
作者: Arthur Müller Felix Grumbach Matthia Sabatelli Department of Machine Intelligence Fraunhofer IOSB-INA Lemgo Germany Center for Applied Data Science Hochschule Bielefeld Gütersloh Germany Department of Artificial Intelligence University of Groningen Groningen The Netherlands
Production scheduling is an essential task in manufacturing, with Reinforcement Learning (RL) emerging as a key solution. In a previous work, RL was utilized to solve an extended permutation flow shop scheduling probl... 详细信息
来源: 评论
Bayesian Inference of Transition Matrices from Incomplete Graph data with a Topological Prior
arXiv
收藏 引用
arXiv 2022年
作者: Perri, Vincenzo Petrović, Luka V. Scholtes, Ingo Data Analytics Group Department of Informatics University of Zurich Switzerland Machine Learning for Complex Networks Center for Artificial Intelligence and Data Science Julius-Maximilians-Universität Würzburg Germany
Many network analysis and graph learning techniques are based on discrete- or continuous-time models of random walks. To apply these methods, it is necessary to infer transition matrices that formalize the underlying ... 详细信息
来源: 评论
Towards Development of Automated Knowledge Maps and databases for Materials Engineering using Large Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Prasad, Deepak Pimpude, Mayur Alankar, Alankar Artificial Intelligence and Data Science Vivekanand Education Society Institute of Technology Mumbai India Department of Mechanical Engineering Indian Institute of Technology Bombay Mumbai400076 India Center for Machine Intelligence and Data Science Indian Institute of Technology Bombay Mumbai400076 India
In this work a Large Language Model (LLM) based workflow is presented that utilizes OpenAI ChatGPT model GPT-3.5-turbo-1106 and Google Gemini Pro model to create summary of text, data and images from research articles... 详细信息
来源: 评论
CBAM-SAUNet: A novel attention U-Net for effective segmentation of corner cases  46
CBAM-SAUNet: A novel attention U-Net for effective segmentat...
收藏 引用
46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
作者: Rajamani, Srividya Tirunellai Rajamani, Kumar Angeline, J. Karthika, R. Schuller, Björn W. Embedded Intelligence for Health Care & Wellbeing University of Augsburg Germany Department of Artificial Intelligence Marwadi University Gujarat Rajkot India Department of Electronics and Communication Engineering Amrita School of Engineering Amrita Vishwa Vidyapeetham Coimbatore India Germany Munich Data Science Institute Germany Munich Center for Machine Learning GLAM-the Group on Language Audio & Music Imperial College London London United Kingdom
U-Net has been demonstrated to be effective for the task of medical image segmentation. Additionally, integrating attention mechanism into U-Net has been shown to yield significant benefits. The Shape Attentive U-Net ... 详细信息
来源: 评论
Influence of serotonin on the long-term muscle contraction of the Kohnstamm phenomenon
收藏 引用
Scientific Reports 2025年 第1期15卷 1-11页
作者: Schmidt, Annika Meindl, Tobias Albu-Schäffer, Alin Franklin, David W. Stratmann, Philipp TUM School of Computation Information and Technology Technical University of Munich (TUM) Garching 85748 Germany Institute of Robotics and Mechtronics German Aerospace Center (DLR) Wessling 82234 Germany Munich Institute of Robotics and Machine Intelligence (MIRMI) Technical University of Munich (TUM) Munich 80992 Germany Department of Neurology University Hospital rechts der Isar Technical University of Munich Munich 81675 Germany Neuromuscular Diagnostics TUM School of Medicine and Health Technical University of Munich Munich 80992 Germany Munich Data Science Institute (MDSI) Technical University of Munich Munich 80992 Germany
Neuromodulation plays a central role in human movement control. An imbalance of neurotransmitters, especially dopamine and serotonin, can be associated with various neurological disorders causing tremors or spasms. Sp...
来源: 评论
Stable, fast and accurate: kernelized attention with relative positional encoding  21
Stable, fast and accurate: kernelized attention with relativ...
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing Systems
作者: Shengjie Luo Shanda Li Tianle Cai Di He Dinglan Peng Shuxin Zheng Guolin Ke Liwei Wang Tie-Yan Liu Center for Data Science Peking University Key Laboratory of Machine Perception MOE School of EECS Peking University Princeton University Microsoft Research University of Science and Technology of China Center for Data Science Peking University and Key Laboratory of Machine Perception MOE School of EECS Peking University and Institute for Artificial Intelligence Peking University
The attention module, which is a crucial component in Transformer, cannot scale efficiently to long sequences due to its quadratic complexity. Many works focus on approximating the dot-then-exponentiate softmax functi...
来源: 评论
Reinforcement Learning as an Improvement Heuristic for Real-World Production Scheduling
Reinforcement Learning as an Improvement Heuristic for Real-...
收藏 引用
International Conference on machine Learning and Applications (ICMLA)
作者: Arthur Müller Lukas Vollenkemper Department of Machine Intelligence Fraunhofer IOSB-INA Lemgo Germany Center for Applied Data Science Bielefeld University of Applied Sciences and Arts Gütersloh Germany
The integration of Reinforcement Learning (RL) with heuristic methods is an emerging trend for solving optimization problems, which leverages RL's ability to learn from the data generated during the search process... 详细信息
来源: 评论