咨询与建议

限定检索结果

文献类型

  • 654 篇 期刊文献
  • 395 篇 会议
  • 5 册 图书

馆藏范围

  • 1,054 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 667 篇 工学
    • 458 篇 计算机科学与技术...
    • 404 篇 软件工程
    • 117 篇 信息与通信工程
    • 117 篇 生物工程
    • 108 篇 控制科学与工程
    • 81 篇 生物医学工程(可授...
    • 74 篇 电气工程
    • 66 篇 光学工程
    • 55 篇 化学工程与技术
    • 50 篇 电子科学与技术(可...
    • 26 篇 机械工程
    • 25 篇 仪器科学与技术
    • 23 篇 力学(可授工学、理...
    • 19 篇 材料科学与工程(可...
    • 19 篇 土木工程
  • 479 篇 理学
    • 270 篇 数学
    • 138 篇 生物学
    • 125 篇 物理学
    • 116 篇 统计学(可授理学、...
    • 57 篇 系统科学
    • 54 篇 化学
    • 45 篇 地球物理学
  • 199 篇 管理学
    • 119 篇 管理科学与工程(可...
    • 89 篇 图书情报与档案管...
    • 40 篇 工商管理
  • 88 篇 医学
    • 69 篇 临床医学
    • 53 篇 基础医学(可授医学...
    • 35 篇 药学(可授医学、理...
  • 25 篇 法学
    • 23 篇 社会学
  • 22 篇 经济学
    • 22 篇 应用经济学
  • 19 篇 教育学
  • 12 篇 农学
  • 5 篇 文学
  • 3 篇 艺术学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 67 篇 machine learning
  • 46 篇 training
  • 29 篇 accuracy
  • 24 篇 neurons
  • 24 篇 feature extracti...
  • 20 篇 cybernetics
  • 19 篇 graph neural net...
  • 18 篇 deep learning
  • 17 篇 galaxies
  • 17 篇 image segmentati...
  • 17 篇 semantics
  • 16 篇 neural networks
  • 14 篇 artificial intel...
  • 14 篇 forecasting
  • 12 篇 deep neural netw...
  • 12 篇 testing
  • 11 篇 reinforcement le...
  • 11 篇 predictive model...
  • 10 篇 abstracts
  • 10 篇 image classifica...

机构

  • 102 篇 center for machi...
  • 70 篇 machine learning...
  • 45 篇 school of mathem...
  • 36 篇 beijing internat...
  • 35 篇 center for data ...
  • 32 篇 college of compu...
  • 32 篇 machine learning...
  • 31 篇 ai for science i...
  • 30 篇 engineering rese...
  • 15 篇 division of part...
  • 14 篇 the research cen...
  • 14 篇 national astrono...
  • 14 篇 national key lab...
  • 13 篇 center for machi...
  • 13 篇 division of part...
  • 13 篇 peking universit...
  • 12 篇 sichuan universi...
  • 11 篇 center for neuro...
  • 11 篇 university of pe...
  • 11 篇 university of ch...

作者

  • 42 篇 wing w. y. ng
  • 40 篇 daniel s. yeung
  • 38 篇 yeung daniel s.
  • 33 篇 patrick p. k. ch...
  • 29 篇 dong bin
  • 29 篇 weinan e.
  • 28 篇 lv jiancheng
  • 27 篇 takeuchi tsutomu...
  • 26 篇 chan patrick p.k...
  • 25 篇 ng wing w.y.
  • 23 篇 wang liwei
  • 22 篇 zhang lei
  • 18 篇 lei wenqiang
  • 16 篇 huang chen
  • 15 篇 yuan kun
  • 15 篇 ng wing w. y.
  • 15 篇 zhang wentao
  • 13 篇 bin dong
  • 13 篇 he di
  • 12 篇 zhang linfeng

语言

  • 972 篇 英文
  • 76 篇 其他
  • 6 篇 中文
  • 1 篇 俄文
检索条件"机构=Center for Machine Learning Research"
1054 条 记 录,以下是1-10 订阅
排序:
Assessing the impact of differential privacy in transfer learning with deep neural networks and transformer language models
收藏 引用
Neural Computing and Applications 2025年 第6期37卷 5097-5119页
作者: Sousa, Samuel Trügler, Andreas Kern, Roman Know Center Research GmbH Graz Austria Graz University of Technology Graz Austria Graz Center for Machine Learning Graz Austria University of Graz Graz Austria
The realization of trustworthy artificial intelligence strongly relies on privacy, fairness, and accountability requirements. Although model trustworthiness results from the synergy between these requirements, some ef... 详细信息
来源: 评论
Benchmarking One Class Classification in Banking, Insurance, and Cyber Security  12th
Benchmarking One Class Classification in Banking, Insurance,...
收藏 引用
12th International Conference on Frontiers of Intelligent Computing: Theory and Applications, FICTA 2024
作者: Priyanka, Chaduvula Vivek, Yelleti Ravi, Vadlamani Center for Artificial Intelligence and Machine Learning Institute for Development and Research in Banking Technology Hyderabad500076 India
Given the inherent rarity observed in imbalanced datasets, adopting one-class classification (OCC) stands out as a pragmatic approach to counteract bias toward the predominant class. This research endeavors to thoroug... 详细信息
来源: 评论
GraphOTTER: Evolving LLM-based Graph Reasoning for Complex Table Question Answering  31
GraphOTTER: Evolving LLM-based Graph Reasoning for Complex T...
收藏 引用
31st International Conference on Computational Linguistics, COLING 2025
作者: Li, Qianlong Huang, Chen Li, Shuai Xiang, Yuanxin Xiong, Deng Lei, Wenqiang Sichuan University China Stevens Institute of Technology United States Engineering Research Center of Machine Learning and Industry Intelligence Ministry of Education China
Complex Table Question Answering involves providing accurate answers to specific questions based on intricate tables that exhibit complex layouts and flexible header locations. Despite considerable progress having bee... 详细信息
来源: 评论
On the Role of Priors in Bayesian Causal learning
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2025年 第5期6卷 1439-1445页
作者: Geiger, Bernhard C. Kern, Roman Graz University of Technology Signal Processing and Speech Communication Laboratory Graz8010 Austria Know Center Research GmbH Graz8010 Austria Graz University of Technology Institute of Machine Learning and Neural Computation Graz8010 Austria
In this work, we investigate causal learning of independent causal mechanisms (ICMs) from a Bayesian perspective. Confirming previous claims from the literature, we show in a didactically accessible manner that unlabe... 详细信息
来源: 评论
INTEGRATING DYNAMICAL SYSTEMS MODELING WITH SPATIOTEMPORAL SCRNA-SEQ DATA ANALYSIS
arXiv
收藏 引用
arXiv 2025年
作者: Zhang, Zhenyi Sun, Yuhao Peng, Qiangwei Li, Tiejun Zhou, Peijie LMAM and School of Mathematical Sciences Peking University China Center for Machine Learning Research Peking University China LMAM and School of Mathematical Sciences Center for Machine Learning Research Peking University China
Understanding the dynamic nature of biological systems is fundamental to deciphering cellular behavior, developmental processes, and disease progression. Single-cell RNA sequencing (scRNA-seq) has provided static snap... 详细信息
来源: 评论
Cross-model Transferability among Large Language Models on the Platonic Representations of Concepts
arXiv
收藏 引用
arXiv 2025年
作者: Huang, Youcheng Huang, Chen Feng, Duanyu Lei, Wenqiang Lv, Jiancheng Sichuan University China Engineering Research Center of Machine Learning and Industry Intelligence Ministry of Education China
Understanding the inner workings of Large Language Models (LLMs) is a critical research frontier. Prior work has shown that a single LLM's concept representations can be captured as steering vectors (SVs), enablin... 详细信息
来源: 评论
MoColl: Agent-Based Specific and General Model Collaboration for Image Captioning
arXiv
收藏 引用
arXiv 2025年
作者: Yang, Pu Dong, Bin The School of Mathematical Sciences Peking University China Beijing International Center for Mathematical Research Center for Machine Learning Research Peking University China
Image captioning is a critical task at the intersection of computer vision and natural language processing, with wide-ranging applications across various domains. For complex tasks such as diagnostic report generation... 详细信息
来源: 评论
PRISM: Self-Pruning Intrinsic Selection Method for Training-Free Multimodal Data Selection
arXiv
收藏 引用
arXiv 2025年
作者: Bi, Jinhe Wang, Yifan Yan, Danqi Xiao, Xun Hecker, Artur Tresp, Volker Ma, Yunpu Ludwig Maximilian University of Munich Germany Munich Research Center Huawei Technologies Germany Munich Center for Machine Learning Germany
Visual instruction tuning refines pre-trained Multimodal Large Language Models (MLLMs) to enhance their real-world task performance. However, the rapid expansion of visual instruction datasets introduces significant d... 详细信息
来源: 评论
Channel Dependence, Limited Lookback Windows, and the Simplicity of Datasets: How Biased is Time Series Forecasting?
arXiv
收藏 引用
arXiv 2025年
作者: Abdelmalak, Ibram Madhusudhanan, Kiran Choi, Jungmin Stubbemann, Maximilian Schmidt-Thieme, Lars Information Science and Machine Learning Lab VWFS Data Analytics Research Center University of Hildesheim Niedersachsen Hildesheim Germany
Time-series forecasting research has converged to a small set of datasets and a standardized collection of evaluation scenarios. Such a standardization is to a specific extent needed for comparable research. However, ...
来源: 评论
Acceleration Algorithms in GNNs: A Survey
收藏 引用
IEEE Transactions on Knowledge and Data Engineering 2025年 第6期37卷 3173-3192页
作者: Ma, Lu Sheng, Zeang Li, Xunkai Gao, Xinyi Hao, Zhezheng Yang, Ling Nie, Xiaonan Jiang, Jiawei Zhang, Wentao Cui, Bin Peking University School of Cs Beijing100871 China Beijing Institute of Technology School of Cs Beijing100811 China University of Queensland BrisbaneQLD4072 Australia Northwestern Polytechnical University School of Ai Xi'an710060 China Wuhan University School of Computer Science Wuhan430072 China Peking University Center for Machine Learning Research Beijing100871 China
Graph Neural Networks have demonstrated remarkable effectiveness in various graph-based tasks, but their inefficiency in training and inference poses significant challenges for scaling to real-world, large-scale appli... 详细信息
来源: 评论