咨询与建议

限定检索结果

文献类型

  • 662 篇 期刊文献
  • 395 篇 会议
  • 5 册 图书

馆藏范围

  • 1,062 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 671 篇 工学
    • 458 篇 计算机科学与技术...
    • 405 篇 软件工程
    • 118 篇 信息与通信工程
    • 118 篇 生物工程
    • 110 篇 控制科学与工程
    • 79 篇 生物医学工程(可授...
    • 73 篇 电气工程
    • 67 篇 光学工程
    • 55 篇 化学工程与技术
    • 53 篇 电子科学与技术(可...
    • 26 篇 机械工程
    • 25 篇 仪器科学与技术
    • 23 篇 力学(可授工学、理...
    • 19 篇 土木工程
  • 483 篇 理学
    • 271 篇 数学
    • 139 篇 生物学
    • 126 篇 物理学
    • 116 篇 统计学(可授理学、...
    • 57 篇 系统科学
    • 54 篇 化学
    • 46 篇 地球物理学
  • 200 篇 管理学
    • 119 篇 管理科学与工程(可...
    • 90 篇 图书情报与档案管...
    • 40 篇 工商管理
  • 88 篇 医学
    • 69 篇 临床医学
    • 52 篇 基础医学(可授医学...
    • 35 篇 药学(可授医学、理...
    • 19 篇 公共卫生与预防医...
  • 24 篇 法学
    • 22 篇 社会学
  • 23 篇 经济学
    • 23 篇 应用经济学
  • 18 篇 教育学
  • 14 篇 农学
  • 6 篇 文学
  • 3 篇 艺术学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 68 篇 machine learning
  • 46 篇 training
  • 28 篇 accuracy
  • 24 篇 neurons
  • 23 篇 feature extracti...
  • 20 篇 cybernetics
  • 18 篇 deep learning
  • 18 篇 graph neural net...
  • 17 篇 galaxies
  • 17 篇 semantics
  • 16 篇 image segmentati...
  • 16 篇 neural networks
  • 14 篇 forecasting
  • 13 篇 artificial intel...
  • 12 篇 deep neural netw...
  • 12 篇 testing
  • 11 篇 reinforcement le...
  • 11 篇 predictive model...
  • 10 篇 abstracts
  • 10 篇 image classifica...

机构

  • 103 篇 center for machi...
  • 70 篇 machine learning...
  • 46 篇 school of mathem...
  • 37 篇 beijing internat...
  • 35 篇 center for data ...
  • 32 篇 college of compu...
  • 32 篇 machine learning...
  • 31 篇 ai for science i...
  • 30 篇 engineering rese...
  • 15 篇 division of part...
  • 14 篇 the research cen...
  • 14 篇 national astrono...
  • 14 篇 national key lab...
  • 13 篇 center for machi...
  • 13 篇 division of part...
  • 13 篇 peking universit...
  • 12 篇 sichuan universi...
  • 11 篇 center for neuro...
  • 11 篇 university of pe...
  • 11 篇 university of ch...

作者

  • 42 篇 wing w. y. ng
  • 40 篇 daniel s. yeung
  • 38 篇 yeung daniel s.
  • 33 篇 patrick p. k. ch...
  • 29 篇 weinan e.
  • 28 篇 dong bin
  • 28 篇 lv jiancheng
  • 27 篇 takeuchi tsutomu...
  • 26 篇 chan patrick p.k...
  • 25 篇 ng wing w.y.
  • 23 篇 wang liwei
  • 22 篇 zhang lei
  • 18 篇 lei wenqiang
  • 16 篇 huang chen
  • 15 篇 yuan kun
  • 15 篇 ng wing w. y.
  • 13 篇 bin dong
  • 13 篇 he di
  • 13 篇 wu lei
  • 13 篇 zhang wentao

语言

  • 976 篇 英文
  • 79 篇 其他
  • 5 篇 中文
检索条件"机构=Center for Machine Learning Research"
1062 条 记 录,以下是11-20 订阅
排序:
Channel Dependence, Limited Lookback Windows, and the Simplicity of Datasets: How Biased is Time Series Forecasting?
arXiv
收藏 引用
arXiv 2025年
作者: Abdelmalak, Ibram Madhusudhanan, Kiran Choi, Jungmin Stubbemann, Maximilian Schmidt-Thieme, Lars Information Science and Machine Learning Lab VWFS Data Analytics Research Center University of Hildesheim Niedersachsen Hildesheim Germany
Time-series forecasting research has converged to a small set of datasets and a standardized collection of evaluation scenarios. Such a standardization is to a specific extent needed for comparable research. However, ...
来源: 评论
A MEMORY EFFICIENT RANDOMIZED SUBSPACE OPTIMIZATION METHOD FOR TRAINING LARGE LANGUAGE MODELS
arXiv
收藏 引用
arXiv 2025年
作者: Chen, Yiming Zhang, Yuan Liu, Yin Yuan, Kun Wen, Zaiwen Beijing International Center for Mathematical Research Peking University Beijing China Center for Data Science Peking University Beijing China Center for Machine Learning Research Peking University Beijing China
The memory challenges associated with training Large Language Models (LLMs) have become a critical concern, particularly when using the Adam optimizer. To address this issue, numerous memory-efficient techniques have ...
来源: 评论
IWILDS'25: The 5th International Workshop on Investigating learning During Web Search  25
IWILDS'25: The 5th International Workshop on Investigating L...
收藏 引用
18th ACM International Conference on Web Search and Data Mining, WSDM 2025
作者: Hoppe, Anett Yu, Ran Liu, Jiqun Bhattacharya, Nilavra TIB - Leibniz Information Centre for Science and Technology Hannover Germany L3S Research Center Leibniz Universität Hannover Hannover Germany University of Bonn Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence *** Bonn Germany The University of Oklahoma NormanOK United States ABB AG Corporate Research Center Germany Mannheim Germany
Web-based learning is evolving rapidly as traditional search engines are complemented by Large Language Models (LLMs) and other AI technologies. This evolution offers new opportunities, such as automated information s... 详细信息
来源: 评论
Adaptive deep probabilistic regression for real-time motor excitability state prediction from human EEG
收藏 引用
Brain Stimulation 2025年 第1期18卷 400-401页
作者: Haxel, Lisa Kapoor, Jaivardhan Ahola, Oskari Kahilakoski, Olli-Pekka Kirchhoff, Miriam Roine, Timo Ziemann, Ulf Macke, Jakob H. Machine Learning in Science Excellence Cluster Machine Learning & Tübingen AI Center Germany Hertie Institute for Clinical Brain Research Department Neurology and Stroke Germany Department of Neuroscience and Biomedical Engineering Aalto University School of Science Finland Department Empirical Inference Max Planck Institute for Intelligent Systems Germany
来源: 评论
HyperSHAP: Shapley Values and Interactions for Hyperparameter Importance
arXiv
收藏 引用
arXiv 2025年
作者: Wever, Marcel Muschalik, Maximilian Fumagalli, Fabian Lindauer, Marius L3S Research Center Germany Leibniz University Hannover Germany Munich Center for Machine Learning Germany LMU Munich Germany Bielefeld University Germany
Hyperparameter optimization (HPO) is a crucial step in achieving strong predictive performance. However, the impact of individual hyperparameters on model generalization is highly context-dependent, prohibiting a one-... 详细信息
来源: 评论
Thermal disorder and phonon softening in the ferroelectric phase transition of lead titanate
收藏 引用
Physical Review B 2025年 第9期111卷 094113-094113页
作者: Pinchen Xie Yixiao Chen Weinan E Roberto Car Program in Applied and Computational Mathematics Princeton University Princeton New Jersey 08544 USA AI for Science Institute Beijing China and Center for Machine Learning Research and School of Mathematical Sciences Peking University Beijing China
We report a molecular dynamics study of ab initio quality of the ferroelectric phase transition in crystalline PbTiO3. We model anharmonicity accurately in terms of potential energy and polarization surfaces trained o... 详细信息
来源: 评论
Breaking Memory Limits: Gradient Wavelet Transform Enhances LLMs Training
arXiv
收藏 引用
arXiv 2025年
作者: Wen, Ziqing Luo, Ping Wang, Jiahuan Deng, Xiaoge Zou, Jinping Yuan, Kun Sun, Tao Li, Dongsheng College of Computer Science and Technology National University of Defense Technology Hunan Changsha China Center for Machine Learning Research Peking University Bejing China
Large language models (LLMs) have shown impressive performance across a range of natural language processing tasks. However, their vast number of parameters introduces significant memory challenges during training, pa... 详细信息
来源: 评论
Aligning Information Capacity Between Vision and Language via Dense-to-Sparse Feature Distillation for Image-Text Matching
arXiv
收藏 引用
arXiv 2025年
作者: Liu, Yang Feng, Wentao Liu, Zhuoyao Huang, Shudong Lv, Jiancheng College of Computer Science Sichuan University Chengdu610065 China Engineering Research Center of Machine Learning and Industry Intelligence Ministry of Education Chengdu610065 China
Enabling Visual Semantic Models to effectively handle multi-view description matching has been a longstanding challenge. Existing methods typically learn a set of embeddings to find the optimal match for each view’s ... 详细信息
来源: 评论
Tensor parametric Hamiltonian operator inference
arXiv
收藏 引用
arXiv 2025年
作者: Vijaywargiya, Arjun McQuarrie, Shane A. Gruber, Anthony Department of Applied and Computational Mathematics and Statistics University of Notre Dame United States Computational Mathematics Center for Computing Research Sandia National Laboratories Scientific Machine Learning Center for Computing Research Sandia National Laboratories
This work presents a tensor-based approach to constructing data-driven reduced-order models corresponding to semi-discrete partial differential equations with canonical Hamiltonian structure. By expressing parameter-v... 详细信息
来源: 评论
TeMP-TraG: Edge-based Temporal Message Passing in Transaction Graphs
arXiv
收藏 引用
arXiv 2025年
作者: Gounoue, Steve Sao, Ashutosh Gottschalk, Simon University of Bonn Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence Bonn Germany L3S Research Center Hannover Germany
Transaction graphs, which represent financial and trade transactions between entities such as bank accounts and companies, can reveal patterns indicative of financial crimes like money laundering and fraud. However, e... 详细信息
来源: 评论