咨询与建议

限定检索结果

文献类型

  • 718 篇 期刊文献
  • 402 篇 会议
  • 2 册 图书

馆藏范围

  • 1,122 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 691 篇 工学
    • 458 篇 计算机科学与技术...
    • 400 篇 软件工程
    • 131 篇 生物工程
    • 114 篇 控制科学与工程
    • 112 篇 信息与通信工程
    • 90 篇 生物医学工程(可授...
    • 74 篇 电气工程
    • 69 篇 光学工程
    • 55 篇 电子科学与技术(可...
    • 54 篇 化学工程与技术
    • 26 篇 土木工程
    • 24 篇 建筑学
    • 22 篇 机械工程
    • 22 篇 仪器科学与技术
    • 20 篇 力学(可授工学、理...
  • 496 篇 理学
    • 236 篇 数学
    • 158 篇 物理学
    • 146 篇 生物学
    • 105 篇 统计学(可授理学、...
    • 62 篇 化学
    • 59 篇 地球物理学
    • 46 篇 系统科学
  • 201 篇 管理学
    • 117 篇 管理科学与工程(可...
    • 94 篇 图书情报与档案管...
    • 37 篇 工商管理
  • 104 篇 医学
    • 90 篇 临床医学
    • 54 篇 基础医学(可授医学...
    • 29 篇 药学(可授医学、理...
    • 21 篇 公共卫生与预防医...
  • 21 篇 经济学
    • 21 篇 应用经济学
  • 21 篇 教育学
  • 18 篇 法学
  • 14 篇 农学
  • 4 篇 文学
  • 2 篇 艺术学
  • 1 篇 哲学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 69 篇 machine learning
  • 44 篇 training
  • 35 篇 accuracy
  • 28 篇 deep learning
  • 27 篇 neurons
  • 25 篇 image segmentati...
  • 24 篇 feature extracti...
  • 20 篇 galaxies
  • 20 篇 cybernetics
  • 17 篇 graph neural net...
  • 17 篇 semantics
  • 13 篇 contrastive lear...
  • 13 篇 predictive model...
  • 12 篇 reinforcement le...
  • 12 篇 testing
  • 11 篇 generative adver...
  • 11 篇 data mining
  • 11 篇 artificial intel...
  • 11 篇 forecasting
  • 10 篇 artificial neura...

机构

  • 80 篇 center for machi...
  • 67 篇 machine learning...
  • 45 篇 center for data ...
  • 41 篇 college of compu...
  • 35 篇 munich center fo...
  • 30 篇 machine learning...
  • 28 篇 key laboratory o...
  • 28 篇 ai for science i...
  • 27 篇 beijing internat...
  • 26 篇 engineering rese...
  • 24 篇 school of mathem...
  • 19 篇 munich center fo...
  • 17 篇 peking universit...
  • 15 篇 national astrono...
  • 15 篇 university of ch...
  • 15 篇 national key lab...
  • 14 篇 the research cen...
  • 14 篇 center for data ...
  • 14 篇 division of part...
  • 14 篇 munich data scie...

作者

  • 39 篇 wing w. y. ng
  • 38 篇 yeung daniel s.
  • 38 篇 daniel s. yeung
  • 33 篇 patrick p. k. ch...
  • 32 篇 wang liwei
  • 30 篇 lv jiancheng
  • 27 篇 weinan e.
  • 26 篇 dong bin
  • 25 篇 ng wing w.y.
  • 24 篇 takeuchi tsutomu...
  • 24 篇 chan patrick p.k...
  • 19 篇 zhu xiao xiang
  • 16 篇 schuller björn w...
  • 16 篇 he di
  • 15 篇 bin dong
  • 13 篇 ng wing w. y.
  • 13 篇 liwei wang
  • 12 篇 zhang linfeng
  • 12 篇 triantafyllopoul...
  • 12 篇 krahmer felix

语言

  • 752 篇 英文
  • 363 篇 其他
  • 8 篇 中文
检索条件"机构=Center for Machine Learning Research and Center for Data Science"
1122 条 记 录,以下是1-10 订阅
排序:
Parallelizing Video Anomaly Detection Using Reconstruction and Future Frame Prediction  6th
Parallelizing Video Anomaly Detection Using Reconstruction a...
收藏 引用
6th International conference on communication and computational technologies, ICCCT 2024
作者: Vasudevan, Vibhav Ramakrishnan, Srinivas Seth, Utkarsh Shreya, M.B. Shylaja, S.S. Center for Data Science and Applied Machine Learning RR Campus Karnataka Bengaluru India
Video anomaly detection (VAD) is a demanding task because the very definition of anomalies in videos is inherently inconclusive and also due to the high manpower required to supervise lengthy videos. This research pap... 详细信息
来源: 评论
Intelligent Assistant for Multivariant Analysis  26
Intelligent Assistant for Multivariant Analysis
收藏 引用
26th International Conference of the Catalan Association for Artificial Intelligence, CCIA 2024
作者: Angerri, Xavier Delgado, Oscar Gibert, Karina Knowledge Engineering and Machine Learning Group Intelligent Data Science and Artificial Intelligence Research Center Universtitat Politècnica de Catalunya Spain
When a Knowledge Discovery from data (KDD) (Fayyad, Piatetsky-Shapiro, & Smyth, 1996) process is being applied to get knowledge, several methods could be used (Gibert, et al., 2018). A simple and fast way to obtai... 详细信息
来源: 评论
Urban Land Cover Classification with Efficient Hybrid Quantum machine learning Model  13
Urban Land Cover Classification with Efficient Hybrid Quantu...
收藏 引用
13th IEEE Congress on Evolutionary Computation, CEC 2024
作者: Fan, Fan Shi, Yilei Zhu, Xiao Xiang Data Science in Earth Observation Munich Germany Wessling Germany Munich Germany Munich Center for Machine Learning Munich Germany
Urban land cover classification aims to derive crucial information from earth observation data and categorize it into specific land uses. To achieve accurate classification, sophisticated machine learning models train... 详细信息
来源: 评论
Towards Highly Efficient Anomaly Detection for Predictive Maintenance  23
Towards Highly Efficient Anomaly Detection for Predictive Ma...
收藏 引用
23rd IEEE International Conference on machine learning and Applications, ICMLA 2024
作者: Klüttermann, Simon Peka, Vanlal Doebler, Philipp Müller, Emmanuel Tu Dortmund University Dortmund Germany Lamarr Institute for Machine Learning and Artificial Intelligence Dortmund Germany Research Center Trustworthy Data Science and Security Dortmund Germany
This paper introduces SEAN, a novel anomaly detection algorithm designed for real-time applications in predictive maintenance. SEAN leverages an ensemble-based approach to deliver competitive performance while drastic... 详细信息
来源: 评论
Create! Don’t Repeat: A Paradigm Shift in Multi-Label Augmentation through Label Creative Generation
Create! Don’t Repeat: A Paradigm Shift in Multi-Label Augme...
收藏 引用
2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024
作者: Wang, Letian Liu, Xianggen Lv, Jiancheng College of Computer Science Sichuan University China Engineering Research Center of Machine Learning and Industry Intelligence China
We propose Label Creative Generation (LCG), a new paradigm in multi-label data augmentation. Beyond repeating data points with fixed labels, LCG creates new data by exploring innovative label combinations. Within LCG,...
来源: 评论
An Improved Finite-time Analysis of Temporal Difference learning with Deep Neural Networks  41
An Improved Finite-time Analysis of Temporal Difference Lear...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Ke, Zhifa Wen, Zaiwen Zhang, Junyu Center for Data Science Peking University China Beijing International Center for Mathematical Research Center for Machine Learning Research Changsha Institute for Computing and Digital Economy Beijing China Department of Industrial Systems Engineering and Management National University of Singapore Singapore
Temporal difference (TD) learning algorithms with neural network function parameterization have well-established empirical success in many practical large-scale reinforcement learning tasks. However, theoretical under... 详细信息
来源: 评论
learning Invariance Preserving Moment Closure Model for Boltzmann-BGK Equation
收藏 引用
Communications in Mathematics and Statistics 2023年 第1期11卷 59-101页
作者: Zhengyi Li Bin Dong Yanli Wang School of Mathematical Sciences Peking UniversityBeijingPeople’s Republic of China Beijing International Center for Mathematical Research&Center for Machine Learning Research Peking UniversityBeijingPeople’s Republic of China Beijing Computational Science Research Center BeijingPeople’s Republic of China
As one of the main governing equations in kinetic theory,the Boltzmann equation is widely utilized in aerospace,microscopic flow,*** high-resolution simulation is crucial in these related ***,due to the high dimension... 详细信息
来源: 评论
Improving Generalization and Convergence by Enhancing Implicit Regularization  38
Improving Generalization and Convergence by Enhancing Implic...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Wang, Mingze Wang, Jinbo He, Haotian Wang, Zilin Huang, Guanhua Xiong, Feiyu Li, Zhiyu Weinan, E. Wu, Lei School of Mathematical Sciences Peking University China Center for Machine Learning Research Peking University China China AI for Science Institute China School of Data Science University of Science and Technology of China China ByteDance Research China
In this work, we propose an Implicit Regularization Enhancement (IRE) framework to accelerate the discovery of flat solutions in deep learning, thereby improving generalization and convergence. Specifically, IRE decou...
来源: 评论
Finding the transcription factor binding locations using novel algorithm segmentation to filtration (S2F)
收藏 引用
Journal of Ambient Intelligence and Humanized Computing 2024年 第9期15卷 3347-3358页
作者: Theepalakshmi, P. Srinivasulu Reddy, U. Department of Computer Science and Engineering Gandhi Institute of Technology and Management Karnataka Bengaluru India Machine Learning and Data Analytics Lab Center of Excellence in Artificial Intelligence Department of Computer Applications National Institute of Technology Tamilnadu Tiruchirappalli India
The primary aim of identifying the binding motifs in gene regulation is to understand the transcriptional regulation molecular mechanism systematically. In this study, the (, d) motif search issue was considered ... 详细信息
来源: 评论
DUO: Diverse, Uncertain, On-Policy Query Generation and Selection for Reinforcement learning from Human Feedback  39
DUO: Diverse, Uncertain, On-Policy Query Generation and Sele...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Feng, Xuening Jiang, Zhaohui Kaufmann, Timo Xu, Puchen Hüllermeier, Eyke Weng, Paul Zhu, Yifei UM-SJTU Joint Institute Shanghai Jiao Tong University Shanghai China Institute for Informatics LMU Munich Munich Germany Munich Center of Machine Learning Munich Germany German Research Center for Artificial Intelligence Germany Data Science Research Center Duke Kunshan University Kunshan China
Defining a reward function is usually a challenging but critical task for the system designer in reinforcement learning, especially when specifying complex behaviors. Reinforcement learning from human feedback (RLHF) ... 详细信息
来源: 评论