咨询与建议

限定检索结果

文献类型

  • 284 篇 会议
  • 76 篇 期刊文献
  • 1 篇 科技报告

馆藏范围

  • 361 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 230 篇 工学
    • 150 篇 计算机科学与技术...
    • 134 篇 软件工程
    • 43 篇 控制科学与工程
    • 32 篇 生物工程
    • 22 篇 土木工程
    • 22 篇 航空宇航科学与技...
    • 21 篇 建筑学
    • 19 篇 信息与通信工程
    • 17 篇 机械工程
    • 15 篇 电子科学与技术(可...
    • 13 篇 安全科学与工程
    • 12 篇 电气工程
    • 11 篇 力学(可授工学、理...
    • 10 篇 材料科学与工程(可...
    • 9 篇 交通运输工程
    • 9 篇 环境科学与工程(可...
    • 8 篇 生物医学工程(可授...
  • 123 篇 理学
    • 51 篇 数学
    • 33 篇 系统科学
    • 30 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 15 篇 物理学
    • 9 篇 大气科学
  • 51 篇 管理学
    • 31 篇 管理科学与工程(可...
    • 26 篇 工商管理
    • 21 篇 图书情报与档案管...
  • 35 篇 法学
    • 33 篇 社会学
  • 16 篇 医学
    • 15 篇 临床医学
    • 14 篇 基础医学(可授医学...
  • 12 篇 军事学
  • 10 篇 教育学
    • 9 篇 教育学
  • 6 篇 经济学
  • 5 篇 农学

主题

  • 33 篇 analytical model...
  • 30 篇 computational mo...
  • 18 篇 interoperability
  • 13 篇 data models
  • 9 篇 decision making
  • 9 篇 virtual reality
  • 8 篇 mathematical mod...
  • 7 篇 discrete event s...
  • 7 篇 educational inst...
  • 7 篇 autonomous agent...
  • 6 篇 computer simulat...
  • 6 篇 nasa
  • 6 篇 semantics
  • 6 篇 blockchain
  • 6 篇 context modeling
  • 5 篇 application soft...
  • 5 篇 ontologies
  • 5 篇 students
  • 5 篇 solid modeling
  • 5 篇 agent-based mode...

机构

  • 31 篇 virginia modelin...
  • 20 篇 virginia modelin...
  • 18 篇 virginia modelin...
  • 17 篇 virginia modelin...
  • 16 篇 virginia modelin...
  • 13 篇 virginia modelin...
  • 12 篇 virginia modelin...
  • 10 篇 virginia modelin...
  • 9 篇 virginia modelin...
  • 8 篇 werneranderson i...
  • 8 篇 virginia modelin...
  • 7 篇 frank batten col...
  • 7 篇 virginia modelin...
  • 7 篇 moves institute ...
  • 7 篇 virginia modelin...
  • 7 篇 center for model...
  • 7 篇 c4i center georg...
  • 6 篇 old dominion uni...
  • 5 篇 center for model...
  • 5 篇 virginia modelin...

作者

  • 32 篇 sachin shetty
  • 26 篇 petty mikel d.
  • 25 篇 tolk andreas
  • 20 篇 shetty sachin
  • 19 篇 padilla jose j.
  • 18 篇 diallo saikou y.
  • 15 篇 sokolowski john ...
  • 13 篇 saikou y. diallo
  • 13 篇 jose j. padilla
  • 13 篇 banks catherine ...
  • 12 篇 mckenzie frederi...
  • 12 篇 andreas tolk
  • 12 篇 turnitsa charles...
  • 11 篇 frydenlund erika
  • 10 篇 diallo saikou
  • 9 篇 blais curtis
  • 9 篇 diaz rafael
  • 9 篇 christopher j. l...
  • 8 篇 weisel eric w.
  • 8 篇 collins andrew j...

语言

  • 356 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"机构=Center for Modeling and Simulation Analysis"
361 条 记 录,以下是1-10 订阅
排序:
ENHANCING GPT-3.5’S PROFICIENCY IN NETLOGO THROUGH FEW-SHOT PROMPTING AND RETRIEVAL-AUGMENTED GENERATION
ENHANCING GPT-3.5’S PROFICIENCY IN NETLOGO THROUGH FEW-SHOT...
收藏 引用
2024 Winter simulation Conference, WSC 2024
作者: Martínez, Joseph Llinas, Brian Botello, Jhon G. Padilla, Jose J. Frydenlund, Erika Virginia Modeling Analysis and Simulation Center Old Dominion University SuffolkVA United States
Recognizing the limited research on Large Language Models (LLMs) capabilities with low-resource languages, this study evaluates and increases the proficiency of the LLM GPT-3.5 in generating interface and procedural c... 详细信息
来源: 评论
U-Net Based Disaster Damage Detection Through Semantic Segmentation
U-Net Based Disaster Damage Detection Through Semantic Segme...
收藏 引用
2023 International Symposium on Networks, Computers and Communications, ISNCC 2023
作者: Nipa, Nishat Ara Lu, Yan Shetty, Sachin Virginia Modeling Analysis & Simulation Center Old Dominion University NorfolkVA United States
Satellite image analysis of natural disasters is critical for effective emergency response, relief planning, and disaster prevention. They can provide a comprehensive view of the affected area allowing for quick and a... 详细信息
来源: 评论
ACCELERATING HYBRID AGENT-BASED MODELS AND FUZZY COGNITIVE MAPS: HOW TO COMBINE AGENTS WHO THINK ALIKE?
ACCELERATING HYBRID AGENT-BASED MODELS AND FUZZY COGNITIVE M...
收藏 引用
2024 Winter simulation Conference, WSC 2024
作者: Giabbanelli, Philippe J. Beerman, Jack T. Virginia Modeling Analysis and Simulation Center Old Dominion University NorfolkVA United States School of Data Science University of Virginia CharlottesvilleVA United States
While Agent-Based Models can create detailed artificial societies based on individual differences and local context, they can be computationally intensive. Modelers may offset these costs through a parsimonious use of... 详细信息
来源: 评论
Transmission Power Control for Interference Reduction in Cellular D2D Networks
Transmission Power Control for Interference Reduction in Cel...
收藏 引用
2023 International Symposium on Networks, Computers and Communications, ISNCC 2023
作者: Sadehvand, Mehrdad Moghim, Neda Ghahfarokhi, Behrouz Shahgholi Shetty, Sachin University of Isfahan Department of Computer Engineering Isfahan Iran Virginia Modeling Analysis and Simulation Center Old Dominion University Suffolk United States
Interference is one of the most critical issues in the cellular Device-to-Device (D2D) networks. The sharing of radio resources in cellular and D2D communications offers spectrum efficiency advantages for the cellular... 详细信息
来源: 评论
BROADENING ACCESS TO simulationS FOR END-USERS VIA LARGE LANGUAGE MODELS: CHALLENGES AND OPPORTUNITIES
BROADENING ACCESS TO SIMULATIONS FOR END-USERS VIA LARGE LAN...
收藏 引用
2024 Winter simulation Conference, WSC 2024
作者: Giabbanelli, Philippe J. Padilla, Jose J. Agrawal, Ameeta Virginia Modeling Analysis and Simulation Center Old Dominion University NorfolkVA United States Dept. of Computer Science Portland State University PortlandOR United States
Large Language Models (LLMs) are becoming ubiquitous to create intelligent virtual assistants that assist users in interacting with a system, as exemplified in marketing. Although LLMs have been discussed in modeling ... 详细信息
来源: 评论
Exploring Large Language Models for Analyzing Changes in Web Archive Content: A Retrieval-Augmented Generation Approach
Exploring Large Language Models for Analyzing Changes in Web...
收藏 引用
2024 IEEE International Conference on Big Data, BigData 2024
作者: Botello, Jhon G. Frew, Lesley Padilla, Jose J. Weigle, Michele C. Old Dominion University Department of Computer Science NorfolkVA United States Virginia Modeling Analysis and Simulation Center Old Dominion University NorfolkVA United States
Websites typically display only their most recent content. However, the dynamic nature of the web leads to frequent updates and deletions. Web archives preserve snapshots of earlier versions for those interested in tr... 详细信息
来源: 评论
Enhancing GPT-3.5's Proficiency in Netlogo through Few-Shot Prompting and Retrieval-Augmented Generation  24
Enhancing GPT-3.5's Proficiency in Netlogo through Few-Shot ...
收藏 引用
Proceedings of the Winter simulation Conference
作者: Joseph Martínez Brian Llinas Jhon G. Botello Jose J. Padilla Erika Frydenlund Virginia Modeling Analysis and Simulation Center Old Dominion University Suffolk VA USA
Recognizing the limited research on Large Language Models (LLMs) capabilities with low-resource languages, this study evaluates and increases the proficiency of the LLM GPT-3.5 in generating interface and procedural c...
来源: 评论
Enhancing GPT-3.5's Proficiency in Netlogo Through Few-Shot Prompting and Retrieval-Augmented Generation
Enhancing GPT-3.5's Proficiency in Netlogo Through Few-Shot ...
收藏 引用
simulation Winter Conference
作者: Joseph Martínez Brian Llinas Jhon G. Botello Jose J. Padilla Erika Frydenlund Virginia Modeling Analysis and Simulation Center Old Dominion University Suffolk VA USA
Recognizing the limited research on Large Language Models (LLMs) capabilities with low-resource languages, this study evaluates and increases the proficiency of the LLM GPT-3.5 in generating interface and procedural c... 详细信息
来源: 评论
modeling and simulation as a Bridge to Advance Practical and Theoretical Insights About Forced Migration Studies
收藏 引用
Journal on Migration and Human Security 2021年 第3期9卷 165-181页
作者: Frydenlund, Erika Virginia Modeling Analysis and Simulation Center Old Dominion University United States
modeling and simulation (M&S) is a relatively unused research approach in forced migration studies. In most of its application areas, M&S is applied in several broad thematic policy-oriented topics: predicting...
来源: 评论
MIA-BAD: An Approach for Enhancing Membership Inference Attack and its Mitigation with Federated Learning
MIA-BAD: An Approach for Enhancing Membership Inference Atta...
收藏 引用
International Conference on Computing, Networking and Communications (ICNC)
作者: Soumya Banerjee Sandip Roy Sayyed Farid Ahamed Devin Quinn Marc Vucovich Dhruv Nandakumar Kevin Choi Abdul Rahman Edward Bowen Sachin Shetty Virginia Modeling Analysis and Simulation Center Old Dominion University Virginia USA Deloitte & Touche LLP
The membership inference attack (MIA) is a popular paradigm for compromising the privacy of a machine learning (ML) model. MIA exploits the natural inclination of ML models to overfit upon the training data. MIAs are ... 详细信息
来源: 评论