咨询与建议

限定检索结果

文献类型

  • 33 篇 会议
  • 10 篇 期刊文献

馆藏范围

  • 43 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 37 篇 工学
    • 28 篇 计算机科学与技术...
    • 26 篇 软件工程
    • 10 篇 信息与通信工程
    • 8 篇 生物医学工程(可授...
    • 4 篇 安全科学与工程
    • 3 篇 控制科学与工程
    • 2 篇 机械工程
    • 2 篇 光学工程
    • 2 篇 仪器科学与技术
    • 2 篇 生物工程
    • 1 篇 冶金工程
    • 1 篇 建筑学
  • 19 篇 理学
    • 16 篇 数学
    • 10 篇 统计学(可授理学、...
    • 3 篇 系统科学
    • 2 篇 生物学
    • 1 篇 物理学
  • 13 篇 管理学
    • 10 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 1 篇 公共管理
  • 5 篇 医学
    • 5 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 2 篇 经济学
    • 2 篇 应用经济学

主题

  • 4 篇 hospitals
  • 3 篇 predictive model...
  • 3 篇 data models
  • 2 篇 diagnosis
  • 2 篇 bayes methods
  • 2 篇 diseases
  • 1 篇 learning systems
  • 1 篇 support vector m...
  • 1 篇 logistics
  • 1 篇 video streaming
  • 1 篇 cancer
  • 1 篇 mood
  • 1 篇 deep neural netw...
  • 1 篇 indexes
  • 1 篇 sparse matrices
  • 1 篇 computer archite...
  • 1 篇 big data
  • 1 篇 anomaly detectio...
  • 1 篇 vector spaces
  • 1 篇 self-supervised ...

机构

  • 12 篇 center for patte...
  • 7 篇 center for patte...
  • 6 篇 center for patte...
  • 4 篇 institute for mu...
  • 2 篇 department of el...
  • 2 篇 monash universit...
  • 2 篇 center for patte...
  • 2 篇 shanghai key lab...
  • 2 篇 center for patte...
  • 2 篇 center for patte...
  • 1 篇 department of ra...
  • 1 篇 public health un...
  • 1 篇 department of ph...
  • 1 篇 department of in...
  • 1 篇 department of co...
  • 1 篇 department of co...
  • 1 篇 university centr...
  • 1 篇 national institu...
  • 1 篇 institute of adv...
  • 1 篇 institute of pub...

作者

  • 22 篇 phung dinh
  • 20 篇 venkatesh svetha
  • 13 篇 nguyen tu dinh
  • 11 篇 rana santu
  • 7 篇 tran truyen
  • 7 篇 svetha venkatesh
  • 6 篇 le trung
  • 6 篇 gupta sunil
  • 6 篇 dinh phung
  • 5 篇 nguyen vu
  • 4 篇 he fan
  • 4 篇 huang xiaolin
  • 4 篇 vu hung
  • 4 篇 he mingzhen
  • 3 篇 li cheng
  • 3 篇 gupta sunil kuma...
  • 3 篇 luo wei
  • 3 篇 truyen tran
  • 2 篇 vo ba-ngu
  • 2 篇 tu dinh nguyen

语言

  • 43 篇 英文
检索条件"机构=Center for Pattern Recognition and Data Analytics"
43 条 记 录,以下是1-10 订阅
排序:
Supervised restricted boltzmann machines  33
Supervised restricted boltzmann machines
收藏 引用
33rd Conference on Uncertainty in Artificial Intelligence, UAI 2017
作者: Nguyen, Tu Dinh Phung, Dinh Huynh, Viet Le, Trung Center for Pattern Recognition and Data Analytics Deakin University Australia
We propose in this paper the supervised re- stricted Boltzmann machine (sRBM), a unified framework which combines the versatility of RBM to simultaneously learn the data representation and to perform supervised learni... 详细信息
来源: 评论
Distributed data augmented support vector machine on Spark  23
Distributed data augmented support vector machine on Spark
收藏 引用
23rd International Conference on pattern recognition, ICPR 2016
作者: Nguyen, Tu Dinh Nguyen, Vu Le, Trung Phung, Dinh Center for Pattern Recognition and Data Analytics Deakin University Australia
Support vector machines (SVMs) are widely-used for classification in machine learning and data mining tasks. However, they traditionally have been applied to small to medium datasets. Recent need to scale up with data... 详细信息
来源: 评论
A Bayesian nonparametric approach for multi-label classification  8
A Bayesian nonparametric approach for multi-label classifica...
收藏 引用
8th Asian Conference on Machine Learning, ACML 2016
作者: Nguyen, Vu Gupta, Sunil Rana, Santu Li, Cheng Venkatesh, Svetha Center for Pattern Recognition and Data Analytics Deakin University Australia
Many real-world applications require multi-label classification where multiple target labels are assigned to each instance. In multi-label classification, there exist the intrinsic correlations between the labels and ... 详细信息
来源: 评论
Regret for expected improvement over the best-observed value and stopping condition  9
Regret for expected improvement over the best-observed value...
收藏 引用
9th Asian Conference on Machine Learning, ACML 2017
作者: Nguyen, Vu Gupta, Sunil Rana, Santu Li, Cheng Venkatesh, Svetha Deakin University Center for Pattern Recognition and Data Analytics Geelong Australia
Bayesian optimization (BO) is a sample-efficient method for global optimization of expensive, noisy, black-box functions using probabilistic methods. The performance of a BO method depends on its selection strategy th... 详细信息
来源: 评论
Faster training of very deep networks via p-norm gates  23
Faster training of very deep networks via p-norm gates
收藏 引用
23rd International Conference on pattern recognition, ICPR 2016
作者: Pham, Trang Tran, Truyen Phung, Dinh Venkatesh, Svetha Center for Pattern Recognition and Data Analytics Deakin University Geelong Australia
A major contributing factor to the recent advances in deep neural networks is structural units that let sensory information and gradients to propagate easily. Gating is one such structure that acts as a flow control. ... 详细信息
来源: 评论
Stabilizing linear prediction models using autoencoder  12th
Stabilizing linear prediction models using autoencoder
收藏 引用
12th International Conference on Advanced data Mining and Applications, ADMA 2016
作者: Gopakumar, Shivapratap Tran, Truyen Phung, Dinh Venkatesh, Svetha Center for Pattern Recognition and Data Analytics Deakin University Burwood Australia
To date, the instability of prognostic predictors in a sparse high dimensional model, which hinders their clinical adoption, has received little attention. Stable prediction is often overlooked in favour of performanc... 详细信息
来源: 评论
Intervention-driven predictive framework for modeling healthcare data
Intervention-driven predictive framework for modeling health...
收藏 引用
18th Pacific-Asia Conference on Advances in Knowledge Discovery and data Mining, PAKDD 2014
作者: Rana, Santu Gupta, Sunil Kumar Phung, Dinh Venkatesh, Svetha Center for Pattern Recognition and Data Analytics Deakin University 3216 Australia
Assessing prognostic risk is crucial to clinical care, and critically dependent on both diagnosis and medical interventions. Current methods use this augmented information to build a single prediction rule. But this m... 详细信息
来源: 评论
Differentially private multi-task learning  11th
Differentially private multi-task learning
收藏 引用
11th Pacific Asia Workshop on Intelligence and Security Informatics, PAISI 2016
作者: Gupta, Sunil Kumar Rana, Santu Venkatesh, Svetha Center for Pattern Recognition and Data Analytics Deakin University Geelong3216 Australia
Privacy restrictions of sensitive data repositories imply that the data analysis is performed in isolation at each data source. A prime example is the isolated nature of building prognosis models from hospital data an... 详细信息
来源: 评论
A privacy preserving bayesian optimization with high efficiency  22nd
A privacy preserving bayesian optimization with high efficie...
收藏 引用
22nd Pacific-Asia Conference on Advances in Knowledge Discovery and data Mining, PAKDD 2018
作者: Nguyen, Thanh Dai Gupta, Sunil Rana, Santu Venkatesh, Svetha Center for Pattern Recognition and Data Analytics Deakin University Waurn Ponds3216 Australia
Bayesian optimization is a powerful machine learning technique for solving experimental design problems. With its use in industrial design optimization, time and cost of industrial processes can be reduced significant... 详细信息
来源: 评论
Split-merge augmented Gibbs sampling for Hierarchical Dirichlet Processes
收藏 引用
17th Pacific-Asia Conference on Knowledge Discovery and data Mining, PAKDD 2013
作者: Rana, Santu Phung, Dinh Venkatesh, Svetha Center for Pattern Recognition and Data Analytics Deakin University Waurn Ponds VIC 3216 Australia
The Hierarchical Dirichlet Process (HDP) model is an important tool for topic analysis. Inference can be performed through a Gibbs sampler using the auxiliary variable method. We propose a splitmerge procedure to augm... 详细信息
来源: 评论