咨询与建议

限定检索结果

文献类型

  • 33 篇 会议
  • 10 篇 期刊文献

馆藏范围

  • 43 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 37 篇 工学
    • 28 篇 计算机科学与技术...
    • 26 篇 软件工程
    • 10 篇 信息与通信工程
    • 8 篇 生物医学工程(可授...
    • 4 篇 安全科学与工程
    • 3 篇 控制科学与工程
    • 2 篇 机械工程
    • 2 篇 光学工程
    • 2 篇 仪器科学与技术
    • 2 篇 生物工程
    • 1 篇 冶金工程
    • 1 篇 建筑学
  • 19 篇 理学
    • 16 篇 数学
    • 10 篇 统计学(可授理学、...
    • 3 篇 系统科学
    • 2 篇 生物学
    • 1 篇 物理学
  • 13 篇 管理学
    • 10 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 1 篇 公共管理
  • 5 篇 医学
    • 5 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 2 篇 经济学
    • 2 篇 应用经济学

主题

  • 4 篇 hospitals
  • 3 篇 predictive model...
  • 3 篇 data models
  • 2 篇 diagnosis
  • 2 篇 bayes methods
  • 2 篇 diseases
  • 1 篇 learning systems
  • 1 篇 support vector m...
  • 1 篇 logistics
  • 1 篇 video streaming
  • 1 篇 cancer
  • 1 篇 mood
  • 1 篇 deep neural netw...
  • 1 篇 indexes
  • 1 篇 sparse matrices
  • 1 篇 computer archite...
  • 1 篇 big data
  • 1 篇 anomaly detectio...
  • 1 篇 vector spaces
  • 1 篇 self-supervised ...

机构

  • 12 篇 center for patte...
  • 7 篇 center for patte...
  • 6 篇 center for patte...
  • 4 篇 institute for mu...
  • 2 篇 department of el...
  • 2 篇 monash universit...
  • 2 篇 center for patte...
  • 2 篇 shanghai key lab...
  • 2 篇 center for patte...
  • 2 篇 center for patte...
  • 1 篇 department of ra...
  • 1 篇 public health un...
  • 1 篇 department of ph...
  • 1 篇 department of in...
  • 1 篇 department of co...
  • 1 篇 department of co...
  • 1 篇 university centr...
  • 1 篇 national institu...
  • 1 篇 institute of adv...
  • 1 篇 institute of pub...

作者

  • 22 篇 phung dinh
  • 20 篇 venkatesh svetha
  • 13 篇 nguyen tu dinh
  • 11 篇 rana santu
  • 7 篇 tran truyen
  • 7 篇 svetha venkatesh
  • 6 篇 le trung
  • 6 篇 gupta sunil
  • 6 篇 dinh phung
  • 5 篇 nguyen vu
  • 4 篇 he fan
  • 4 篇 huang xiaolin
  • 4 篇 vu hung
  • 4 篇 he mingzhen
  • 3 篇 li cheng
  • 3 篇 gupta sunil kuma...
  • 3 篇 luo wei
  • 3 篇 truyen tran
  • 2 篇 vo ba-ngu
  • 2 篇 tu dinh nguyen

语言

  • 43 篇 英文
检索条件"机构=Center for Pattern Recognition and Data Analytics"
43 条 记 录,以下是1-10 订阅
排序:
Decentralized Kernel Ridge Regression Based on data-Dependent Random Feature
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Ruikai He, Fan He, Mingzhen Yang, Jie Huang, Xiaolin The Institute of Image Processing and Pattern Recognition The MOE Key Laboratory of System Control and Information Processing Shanghai Jiao Tong University Shanghai200240 China The STADIUS Center for Dynamical Systems Signal Processing and Data Analytics KU Leuven LeuvenB-3001 Belgium
Random feature (RF) has been widely used for node consistency in decentralized kernel ridge regression (KRR). Currently, the consistency is guaranteed by imposing constraints on coefficients of features, necessitating... 详细信息
来源: 评论
data Imputation by Pursuing Better Classification: A Supervised Kernel-Based Method
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Ruikai He, Fan He, Mingzhen Wang, Kaijie Huang, Xiaolin Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University 800 Dongchuan RD Shanghai200240 China STADIUS Center for Dynamical Systems Signal Processing and Data Analytics KU Leuven Oude Markt 13 Leuven3000 Belgium
data imputation, the process of filling in missing feature elements for incomplete data sets, plays a crucial role in data-driven learning. A fundamental belief is that data imputation is helpful for learning performa... 详细信息
来源: 评论
ENHANCING KERNEL FLEXIBILITY VIA LEARNING ASYMMETRIC LOCALLY-ADAPTIVE KERNELS
arXiv
收藏 引用
arXiv 2023年
作者: He, Fan He, Mingzhen Shi, Lei Huang, Xiaolin Suykens, Johan A.K. STADIUS Center for Dynamical Systems Signal Processing and Data Analytics KU Leuven Belgium Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China Shanghai Key Laboratory for Contemporary Applied Mathematics School of Mathematical Sciences Fudan University China
The lack of sufficient flexibility is the key bottleneck of kernel-based learning that relies on manually designed, pre-given, and non-trainable kernels. To enhance kernel flexibility, this paper introduces the concep... 详细信息
来源: 评论
Learning Analysis of Kernel Ridgeless Regression with Asymmetric Kernel Learning
arXiv
收藏 引用
arXiv 2024年
作者: He, Fan He, Mingzhen Shi, Lei Huang, Xiaolin Suykens, Johan A.K. STADIUS Center for Dynamical Systems Signal Processing and Data Analytics KU Leuven Leuven Belgium MOE Key Laboratory of System Control and Information Processing Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Shanghai Key Laboratory for Contemporary Applied Mathematics School of Mathematical Sciences Fudan University Shanghai200433 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China MOE Key Laboratory of System Control and Information Processing Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai200240 China
Ridgeless regression has garnered attention among researchers, particularly in light of the "Benign Overfitting" phenomenon, where models interpolating noisy samples demonstrate robust generalization. Howeve... 详细信息
来源: 评论
Robust anomaly detection in videos using multilevel representations  33
Robust anomaly detection in videos using multilevel represen...
收藏 引用
33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
作者: Vu, Hung Nguyen, Tu Dinh Le, Trung Luo, Wei Phung, Dinh Center for Pattern Recognition and Data Analytics Deakin University Geelong Australia Monash University ClaytonVIC3800 Australia
Detecting anomalies in surveillance videos has long been an important but unsolved problem. In particular, many existing solutions are overly sensitive to (often ephemeral) visual artifacts in the raw video data, resu... 详细信息
来源: 评论
A privacy preserving bayesian optimization with high efficiency  22nd
A privacy preserving bayesian optimization with high efficie...
收藏 引用
22nd Pacific-Asia Conference on Advances in Knowledge Discovery and data Mining, PAKDD 2018
作者: Nguyen, Thanh Dai Gupta, Sunil Rana, Santu Venkatesh, Svetha Center for Pattern Recognition and Data Analytics Deakin University Waurn Ponds3216 Australia
Bayesian optimization is a powerful machine learning technique for solving experimental design problems. With its use in industrial design optimization, time and cost of industrial processes can be reduced significant... 详细信息
来源: 评论
Trans2Vec: Learning transaction embedding via items and frequent itemsets  22nd
Trans2Vec: Learning transaction embedding via items and freq...
收藏 引用
22nd Pacific-Asia Conference on Advances in Knowledge Discovery and data Mining, PAKDD 2018
作者: Nguyen, Dang Nguyen, Tu Dinh Luo, Wei Venkatesh, Svetha Center for Pattern Recognition and Data Analytics School of Information Technology Deakin University Geelong Australia
Learning meaningful and effective representations for transaction data is a crucial prerequisite for transaction classification and clustering tasks. Traditional methods which use frequent itemsets (FIs) as features o... 详细信息
来源: 评论
Geometric enclosing networks  27
Geometric enclosing networks
收藏 引用
27th International Joint Conference on Artificial Intelligence, IJCAI 2018
作者: Le, Trung Vu, Hung Nguyen, Tu Dinh Phung, Dinh Faculty of Information Technology Monash University Australia Center for Pattern Recognition and Data Analytics Deakin University Australia
Training model to generate data has increasingly attracted research attention and become important in modern world applications. We propose in this paper a new geometry-based optimization approach to address this prob... 详细信息
来源: 评论
Batch Normalized Deep Boltzmann Machines  10
Batch Normalized Deep Boltzmann Machines
收藏 引用
10th Asian Conference on Machine Learning, ACML 2018
作者: Vu, Hung Nguyen, Tu Dinh Le, Trung Luo, Wei Phung, Dinh Center for Pattern Recognition and Data Analytics Deakin University Geelong Australia Monash University ClaytonVIC3800 Australia
Training Deep Boltzmann Machines (DBMs) is a challenging task in deep generative model studies. The careless training usually leads to a divergence or a useless model. We discover that this phenomenon is due to the ch... 详细信息
来源: 评论
Detection of unknown anomalies in streaming videos with generative energy-based Boltzmann models
arXiv
收藏 引用
arXiv 2018年
作者: Vu, Hung Nguyen, Tu Dinh Phung, Dinh Center for Pattern Recognition and Data Analytics School of Information Technology Deakin University Geelong Australia
Abnormal event detection is one of the important objectives in research and practical applications of video surveillance. However, there are still three challenging problems for most anomaly detection systems in pract... 详细信息
来源: 评论