咨询与建议

限定检索结果

文献类型

  • 33 篇 会议
  • 10 篇 期刊文献

馆藏范围

  • 43 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 37 篇 工学
    • 28 篇 计算机科学与技术...
    • 26 篇 软件工程
    • 10 篇 信息与通信工程
    • 8 篇 生物医学工程(可授...
    • 4 篇 安全科学与工程
    • 3 篇 控制科学与工程
    • 2 篇 机械工程
    • 2 篇 光学工程
    • 2 篇 仪器科学与技术
    • 2 篇 生物工程
    • 1 篇 冶金工程
    • 1 篇 建筑学
  • 19 篇 理学
    • 16 篇 数学
    • 10 篇 统计学(可授理学、...
    • 3 篇 系统科学
    • 2 篇 生物学
    • 1 篇 物理学
  • 13 篇 管理学
    • 10 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 1 篇 公共管理
  • 5 篇 医学
    • 5 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 2 篇 经济学
    • 2 篇 应用经济学

主题

  • 4 篇 hospitals
  • 3 篇 predictive model...
  • 3 篇 data models
  • 2 篇 diagnosis
  • 2 篇 bayes methods
  • 2 篇 diseases
  • 1 篇 learning systems
  • 1 篇 support vector m...
  • 1 篇 logistics
  • 1 篇 video streaming
  • 1 篇 cancer
  • 1 篇 mood
  • 1 篇 deep neural netw...
  • 1 篇 indexes
  • 1 篇 sparse matrices
  • 1 篇 computer archite...
  • 1 篇 big data
  • 1 篇 anomaly detectio...
  • 1 篇 vector spaces
  • 1 篇 self-supervised ...

机构

  • 12 篇 center for patte...
  • 7 篇 center for patte...
  • 6 篇 center for patte...
  • 4 篇 institute for mu...
  • 2 篇 department of el...
  • 2 篇 monash universit...
  • 2 篇 center for patte...
  • 2 篇 shanghai key lab...
  • 2 篇 center for patte...
  • 2 篇 center for patte...
  • 1 篇 department of ra...
  • 1 篇 public health un...
  • 1 篇 department of ph...
  • 1 篇 department of in...
  • 1 篇 department of co...
  • 1 篇 department of co...
  • 1 篇 university centr...
  • 1 篇 national institu...
  • 1 篇 institute of adv...
  • 1 篇 institute of pub...

作者

  • 22 篇 phung dinh
  • 20 篇 venkatesh svetha
  • 13 篇 nguyen tu dinh
  • 11 篇 rana santu
  • 7 篇 tran truyen
  • 7 篇 svetha venkatesh
  • 6 篇 le trung
  • 6 篇 gupta sunil
  • 6 篇 dinh phung
  • 5 篇 nguyen vu
  • 4 篇 he fan
  • 4 篇 huang xiaolin
  • 4 篇 vu hung
  • 4 篇 he mingzhen
  • 3 篇 li cheng
  • 3 篇 gupta sunil kuma...
  • 3 篇 luo wei
  • 3 篇 truyen tran
  • 2 篇 vo ba-ngu
  • 2 篇 tu dinh nguyen

语言

  • 43 篇 英文
检索条件"机构=Center for Pattern Recognition and Data Analytics"
43 条 记 录,以下是11-20 订阅
排序:
Trans2Vec: Learning transaction embedding via items and frequent itemsets  22nd
Trans2Vec: Learning transaction embedding via items and freq...
收藏 引用
22nd Pacific-Asia Conference on Advances in Knowledge Discovery and data Mining, PAKDD 2018
作者: Nguyen, Dang Nguyen, Tu Dinh Luo, Wei Venkatesh, Svetha Center for Pattern Recognition and Data Analytics School of Information Technology Deakin University Geelong Australia
Learning meaningful and effective representations for transaction data is a crucial prerequisite for transaction classification and clustering tasks. Traditional methods which use frequent itemsets (FIs) as features o... 详细信息
来源: 评论
Keeping up with innovation: A predictive framework for modeling healthcare data with evolving clinical interventions  14
Keeping up with innovation: A predictive framework for model...
收藏 引用
14th SIAM International Conference on data Mining, SDM 2014
作者: Gupta, Sunil Kumar Rana, Santu Phung, Dinh Venkatesh, Svetha Center for Pattern Recognition and Data Analytics Deakin University Geelong Waura Ponds Campus Victoria Australia
Medical outcomes are inexorably linked to patient illness and clinical interventions. Interventions change the course of disease, crucially determining outcome. Traditional outcome prediction models build a single cla... 详细信息
来源: 评论
Latent patient profile modelling and applications with mixed-variate restricted Boltzmann machine  1
收藏 引用
17th Pacific-Asia Conference on Knowledge Discovery and data Mining, PAKDD 2013
作者: Nguyen, Tu Dinh Tran, Truyen Phung, Dinh Venkatesh, Svetha Center for Pattern Recognition and Data Analytics School of Information Technology Deakin University Geelong VIC Australia
Efficient management of chronic diseases is critical in modern health care. We consider diabetes mellitus, and our ongoing goal is to examine how machine learning can deliver information for clinical efficiency. The c... 详细信息
来源: 评论
What shall i share and with Whom? - A multi-task learning formulation using multi-faceted task relationships
What shall i share and with Whom? - A multi-task learning fo...
收藏 引用
SIAM International Conference on data Mining 2015, SDM 2015
作者: Gupta, Sunil Rana, Santu Phung, Dinh Venkatesh, Svetha Center for Pattern Recognition and Data Analytics Deakin University Geelong Waurn Ponds Campus VIC Australia
Multi-task learning is a learning paradigm that improves the performance of "related" tasks through their joint learning. To do this each task answers the question "Which other task should I share with&... 详细信息
来源: 评论
Geometric enclosing networks  27
Geometric enclosing networks
收藏 引用
27th International Joint Conference on Artificial Intelligence, IJCAI 2018
作者: Le, Trung Vu, Hung Nguyen, Tu Dinh Phung, Dinh Faculty of Information Technology Monash University Australia Center for Pattern Recognition and Data Analytics Deakin University Australia
Training model to generate data has increasingly attracted research attention and become important in modern world applications. We propose in this paper a new geometry-based optimization approach to address this prob... 详细信息
来源: 评论
A random finite set model for data clustering  17
A random finite set model for data clustering
收藏 引用
17th International Conference on Information Fusion, FUSION 2014
作者: Phung, Dinh Vo, Ba-Ngu Center for Pattern Recognition and Data Analytics Deakin University Australia Department of Electrical and Computer Engineering Curtin University Australia
The goal of data clustering is to partition data points into groups to optimize a given objective function. While most existing clustering algorithms treat each data point as vector, in many applications each datum is... 详细信息
来源: 评论
Batch Normalized Deep Boltzmann Machines  10
Batch Normalized Deep Boltzmann Machines
收藏 引用
10th Asian Conference on Machine Learning, ACML 2018
作者: Vu, Hung Nguyen, Tu Dinh Le, Trung Luo, Wei Phung, Dinh Center for Pattern Recognition and Data Analytics Deakin University Geelong Australia Monash University ClaytonVIC3800 Australia
Training Deep Boltzmann Machines (DBMs) is a challenging task in deep generative model studies. The careless training usually leads to a divergence or a useless model. We discover that this phenomenon is due to the ch... 详细信息
来源: 评论
Large-scale online kernel learning with random feature reparameterization  26
Large-scale online kernel learning with random feature repar...
收藏 引用
26th International Joint Conference on Artificial Intelligence, IJCAI 2017
作者: Nguyen, Tu Dinh Le, Trung Bui, Hung Phung, Dinh Adobe Research Adobe Systems Inc. Australia Center for Pattern Recognition and Data Analytics Deakin University Australia
A typical online kernel learning method faces two fundamental issues: the complexity in dealing with a huge number of observed data points (a.k.a the curse of kernelization) and the difficulty in learning kernel param... 详细信息
来源: 评论
Robust anomaly detection in videos using multilevel representations  33
Robust anomaly detection in videos using multilevel represen...
收藏 引用
33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
作者: Vu, Hung Nguyen, Tu Dinh Le, Trung Luo, Wei Phung, Dinh Center for Pattern Recognition and Data Analytics Deakin University Geelong Australia Monash University ClaytonVIC3800 Australia
Detecting anomalies in surveillance videos has long been an important but unsolved problem. In particular, many existing solutions are overly sensitive to (often ephemeral) visual artifacts in the raw video data, resu... 详细信息
来源: 评论
Cascade Bayesian optimization  29th
收藏 引用
29th Australasian Joint Conference on Artificial Intelligence, AI 2016
作者: Nguyen, Thanh Dai Gupta, Sunil Rana, Santu Nguyen, Vu Venkatesh, Svetha Deane, Kyle J. Sanders, Paul G. Center for Pattern Recognition and Data Analytics Deakin University Geelong3216 Australia Materials Science and Engineering Michigan Technological University Houghton United States
Multi-stage cascade processes are fairly common, especially in manufacturing industry. Precursors or raw materials are transformed at each stage before being used as the input to the next stage. Setting the right cont... 详细信息
来源: 评论