咨询与建议

限定检索结果

文献类型

  • 33 篇 会议
  • 10 篇 期刊文献

馆藏范围

  • 43 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 37 篇 工学
    • 28 篇 计算机科学与技术...
    • 26 篇 软件工程
    • 10 篇 信息与通信工程
    • 8 篇 生物医学工程(可授...
    • 4 篇 安全科学与工程
    • 3 篇 控制科学与工程
    • 2 篇 机械工程
    • 2 篇 光学工程
    • 2 篇 仪器科学与技术
    • 2 篇 生物工程
    • 1 篇 冶金工程
    • 1 篇 建筑学
  • 19 篇 理学
    • 16 篇 数学
    • 10 篇 统计学(可授理学、...
    • 3 篇 系统科学
    • 2 篇 生物学
    • 1 篇 物理学
  • 13 篇 管理学
    • 10 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 1 篇 公共管理
  • 5 篇 医学
    • 5 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 2 篇 经济学
    • 2 篇 应用经济学

主题

  • 4 篇 hospitals
  • 3 篇 predictive model...
  • 3 篇 data models
  • 2 篇 diagnosis
  • 2 篇 bayes methods
  • 2 篇 diseases
  • 1 篇 learning systems
  • 1 篇 support vector m...
  • 1 篇 logistics
  • 1 篇 video streaming
  • 1 篇 cancer
  • 1 篇 mood
  • 1 篇 deep neural netw...
  • 1 篇 indexes
  • 1 篇 sparse matrices
  • 1 篇 computer archite...
  • 1 篇 big data
  • 1 篇 anomaly detectio...
  • 1 篇 vector spaces
  • 1 篇 self-supervised ...

机构

  • 12 篇 center for patte...
  • 7 篇 center for patte...
  • 6 篇 center for patte...
  • 4 篇 institute for mu...
  • 2 篇 department of el...
  • 2 篇 monash universit...
  • 2 篇 center for patte...
  • 2 篇 shanghai key lab...
  • 2 篇 center for patte...
  • 2 篇 center for patte...
  • 1 篇 department of ra...
  • 1 篇 public health un...
  • 1 篇 department of ph...
  • 1 篇 department of in...
  • 1 篇 department of co...
  • 1 篇 department of co...
  • 1 篇 university centr...
  • 1 篇 national institu...
  • 1 篇 institute of adv...
  • 1 篇 institute of pub...

作者

  • 22 篇 phung dinh
  • 20 篇 venkatesh svetha
  • 13 篇 nguyen tu dinh
  • 11 篇 rana santu
  • 7 篇 tran truyen
  • 7 篇 svetha venkatesh
  • 6 篇 le trung
  • 6 篇 gupta sunil
  • 6 篇 dinh phung
  • 5 篇 nguyen vu
  • 4 篇 he fan
  • 4 篇 huang xiaolin
  • 4 篇 vu hung
  • 4 篇 he mingzhen
  • 3 篇 li cheng
  • 3 篇 gupta sunil kuma...
  • 3 篇 luo wei
  • 3 篇 truyen tran
  • 2 篇 vo ba-ngu
  • 2 篇 tu dinh nguyen

语言

  • 43 篇 英文
检索条件"机构=Center for Pattern Recognition and Data Analytics"
43 条 记 录,以下是21-30 订阅
排序:
Regularizing Topic Discovery in EMRs with Side Information by Using Hierarchical Bayesian Models
Regularizing Topic Discovery in EMRs with Side Information b...
收藏 引用
International Conference on pattern recognition
作者: Cheng Li Santu Rana Dinh Phung Svetha Venkatesh Center for Pattern Recognition and Data Analytics Deakin University
We propose a novel hierarchical Bayesian framework, word-distance-dependent Chinese restaurant franchise (wd-dCRF) for topic discovery from a document corpus regularized by side information in the form of word-to-word... 详细信息
来源: 评论
Large-scale statistical modeling of motion patterns: A Bayesian nonparametric approach  12
Large-scale statistical modeling of motion patterns: A Bayes...
收藏 引用
8th Indian Conference on Computer Vision, Graphics and Image Processing, ICVGIP 2012
作者: Rana, Santu Phung, Dinh Pham, Sonny Venkatesh, Svetha Center for Pattern Recognition and Data Analytics Deakin University Waurn Ponds VIC 3216 Australia Department of Computing Curtin University Bentley WA 6102 Australia
We propose a novel framework for large-scale scene understanding in static camera surveillance. Our techniques combine fast rank-1 constrained robust PCA to compute the foreground, with non-parametric Bayesian models ... 详细信息
来源: 评论
Learning parts-based representations with nonnegative restricted boltzmann machine  5
Learning parts-based representations with nonnegative restri...
收藏 引用
5th Asian Conference on Machine Learning, ACML 2013
作者: Nguyeny, Tu Dinh Tranyz, Truyen Phungy, Dinh Venkateshy, Svetha Center for Pattern Recognition and Data Analytics School of Information Technology Deakin University Geelong Australia Institute for Multi-Sensor Processing and Content Analysis Curtin University Australia
The success of any machine learning system depends critically on effective representations of data. In many cases, especially those in vision, it is desirable that a representation scheme uncovers the parts-based, add... 详细信息
来源: 评论
Tensor-variate restricted boltzmann machines  29
Tensor-variate restricted boltzmann machines
收藏 引用
29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
作者: Nguyen, Tu Dinh Tran, Truyen Phung, Dinh Venkatesh, Svetha Center for Pattern Recognition and Data Analytics School of Information Technology Deakin University Geelong Australia Institute for Multi-Sensor Processing and Content Analysis Curtin University Australia
Restricted Boltzmann Machines (RBMs) are an important class of latent variable models for representing vector data. An under-explored area is multimode data, where each data point is a matrix or a tensor. Standard RBM... 详细信息
来源: 评论
Learning sparse latent representation and distance metric for image retrieval
Learning sparse latent representation and distance metric fo...
收藏 引用
2013 IEEE International Conference on Multimedia and Expo, ICME 2013
作者: Nguyen, Tu Dinh Tran, Truyen Phung, Dinh Venkatesh, Svetha Center for Pattern Recognition and Data Analytics School of Information Technology Deakin University Geelong Australia Institute for Multi-Sensor Processing and Content Analysis Curtin University Australia
The performance of image retrieval depends critically on the semantic representation and the distance function used to estimate the similarity of two images. A good representation should integrate multiple visual and ... 详细信息
来源: 评论
One-Pass Logistic Regression for Label-Drift and Large-Scale Classification on Distributed Systems
One-Pass Logistic Regression for Label-Drift and Large-Scale...
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Vu Nguyen Tu Dinh Nguyen Trung Le Svetha Venkatesh Dinh Phung Center for Pattern Recognition and Data Analytics Deakin University Australia
Logistic regression (LR) for classification is the workhorse in industry, where a set of predefined classes is required. The model, however, fails to work in the case where the class labels are not known in advance, a... 详细信息
来源: 评论
Forecasting Patient Outflow from Wards having No Real-Time Clinical data
Forecasting Patient Outflow from Wards having No Real-Time C...
收藏 引用
IEEE International Conference on Healthcare Informatics (ICHI)
作者: Shivapratap Gopakumar Truyen Tran Wei Luo Dinh Phung Svetha Venkatesh Center for Pattern Recognition and Data Analytics Deakin University Australia
Modelling patient flow is crucial in understanding resource demand and prioritization. To date, there has been limited work in predicting ward-level discharges. Our study investigates forecasting total next-day discha... 详细信息
来源: 评论
Nonnegative restricted boltzmann machines for parts-based representations discovery and predictive model stabilization
arXiv
收藏 引用
arXiv 2017年
作者: Nguyen, Tu Dinh Tran, Truyen Phung, Dinh Venkatesh, Svetha Center for Pattern Recognition and Data Analytics Deakin University Australia
The success of any machine learning system depends critically on effective representations of data. In many cases, it is desirable that a representation scheme uncovers the parts-based, additive nature of the data. Of... 详细信息
来源: 评论
Improved risk predictions via sparse imputation of patient conditions in electronic medical records
Improved risk predictions via sparse imputation of patient c...
收藏 引用
International Conference on data Science and Advanced analytics (DSAA)
作者: Budhaditya Saha Sunil Gupta Svetha Venkatesh Center for Pattern Recognition and Data Analytics (PRaDA) Deakin University Australia
Electronic Medical Records (EMR) are increasingly used for risk prediction. EMR analysis is complicated by missing entries. There are two reasons - the “primary reason for admission” is included in EMR, but the co-m... 详细信息
来源: 评论
Faster training of very deep networks via p-norm gates
Faster training of very deep networks via p-norm gates
收藏 引用
International Conference on pattern recognition
作者: Trang Pham Truyen Tran Dinh Phung Svetha Venkatesh Center for Pattern Recognition and Data Analytics Deakin University Geelong Australia
A major contributing factor to the recent advances in deep neural networks is structural units that let sensory information and gradients to propagate easily. Gating is one such structure that acts as a flow control. ... 详细信息
来源: 评论