咨询与建议

限定检索结果

文献类型

  • 33 篇 会议
  • 10 篇 期刊文献

馆藏范围

  • 43 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 37 篇 工学
    • 28 篇 计算机科学与技术...
    • 26 篇 软件工程
    • 10 篇 信息与通信工程
    • 8 篇 生物医学工程(可授...
    • 4 篇 安全科学与工程
    • 3 篇 控制科学与工程
    • 2 篇 机械工程
    • 2 篇 光学工程
    • 2 篇 仪器科学与技术
    • 2 篇 生物工程
    • 1 篇 冶金工程
    • 1 篇 建筑学
  • 19 篇 理学
    • 16 篇 数学
    • 10 篇 统计学(可授理学、...
    • 3 篇 系统科学
    • 2 篇 生物学
    • 1 篇 物理学
  • 13 篇 管理学
    • 10 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 1 篇 公共管理
  • 5 篇 医学
    • 5 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 2 篇 经济学
    • 2 篇 应用经济学

主题

  • 4 篇 hospitals
  • 3 篇 predictive model...
  • 3 篇 data models
  • 2 篇 diagnosis
  • 2 篇 bayes methods
  • 2 篇 diseases
  • 1 篇 learning systems
  • 1 篇 support vector m...
  • 1 篇 logistics
  • 1 篇 video streaming
  • 1 篇 cancer
  • 1 篇 mood
  • 1 篇 deep neural netw...
  • 1 篇 indexes
  • 1 篇 sparse matrices
  • 1 篇 computer archite...
  • 1 篇 big data
  • 1 篇 anomaly detectio...
  • 1 篇 vector spaces
  • 1 篇 self-supervised ...

机构

  • 12 篇 center for patte...
  • 7 篇 center for patte...
  • 6 篇 center for patte...
  • 4 篇 institute for mu...
  • 2 篇 department of el...
  • 2 篇 monash universit...
  • 2 篇 center for patte...
  • 2 篇 shanghai key lab...
  • 2 篇 center for patte...
  • 2 篇 center for patte...
  • 1 篇 department of ra...
  • 1 篇 public health un...
  • 1 篇 department of ph...
  • 1 篇 department of in...
  • 1 篇 department of co...
  • 1 篇 department of co...
  • 1 篇 university centr...
  • 1 篇 national institu...
  • 1 篇 institute of adv...
  • 1 篇 institute of pub...

作者

  • 22 篇 phung dinh
  • 20 篇 venkatesh svetha
  • 13 篇 nguyen tu dinh
  • 11 篇 rana santu
  • 7 篇 tran truyen
  • 7 篇 svetha venkatesh
  • 6 篇 le trung
  • 6 篇 gupta sunil
  • 6 篇 dinh phung
  • 5 篇 nguyen vu
  • 4 篇 he fan
  • 4 篇 huang xiaolin
  • 4 篇 vu hung
  • 4 篇 he mingzhen
  • 3 篇 li cheng
  • 3 篇 gupta sunil kuma...
  • 3 篇 luo wei
  • 3 篇 truyen tran
  • 2 篇 vo ba-ngu
  • 2 篇 tu dinh nguyen

语言

  • 43 篇 英文
检索条件"机构=Center for Pattern Recognition and Data Analytics"
43 条 记 录,以下是31-40 订阅
排序:
Budgeted batch bayesian optimization with unknown batch sizes
arXiv
收藏 引用
arXiv 2017年
作者: Nguyen, Vu Rana, Santu Gupta, Sunil Li, Cheng Venkatesh, Svetha Center for Pattern Recognition and Data Analytics Deakin University Geelong Australia
Parameter settings profoundly impact the performance of machine learning algorithms and laboratory experiments. The classical grid search or trial-error methods are exponentially expensive in large parameter spaces, a... 详细信息
来源: 评论
Discovering latent affective dynamics among individuals in online mental health-related communities
Discovering latent affective dynamics among individuals in o...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Bo Dao Thin Nguyen Svetha Venkatesh Dinh Phung Center for Pattern Recognition and Data Analytics(PRaDA) Deakin University Geelong Australia
Discovering dynamics of emotion and mood changes for individuals has the potential to enhance the diagnosis and treatment of mental disorders. In this paper we study affective transitions and dynamics among individual... 详细信息
来源: 评论
Clustering patient medical records via sparse subspace representation
收藏 引用
17th Pacific-Asia Conference on Knowledge Discovery and data Mining, PAKDD 2013
作者: Saha, Budhaditya Pham, Duc-Son Phung, Dinh Venkatesh, Svetha Center for Pattern Recognition and Data Analytics School of Information Technology Deakin University Geelong VIC Australia Institute for Multi-sensor Processing and Content Analysis Department of Computing Curtin University WA Australia
The health industry is facing increasing challenge with "big data" as traditional methods fail to manage the scale and complexity. This paper examines clustering of patient records for chronic diseases to fa... 详细信息
来源: 评论
Detection of unknown anomalies in streaming videos with generative energy-based Boltzmann models
arXiv
收藏 引用
arXiv 2018年
作者: Vu, Hung Nguyen, Tu Dinh Phung, Dinh Center for Pattern Recognition and Data Analytics School of Information Technology Deakin University Geelong Australia
Abnormal event detection is one of the important objectives in research and practical applications of video surveillance. However, there are still three challenging problems for most anomaly detection systems in pract... 详细信息
来源: 评论
Oscillation resolution for massive cell phone traffic data  1
Oscillation resolution for massive cell phone traffic data
收藏 引用
1st Workshop on Mobile data, Mobidata 2016, co-located with MobiSys 2016
作者: Qi, Ling Qiao, Yuanyuan Abdesslem, Fehmi Ben Ma, Zhanyu Yang, Jie Center for Data Science Beijing Key Laboratory of Network System Architecture and Convergence Beijing Laboratory of Advanced Information Network BUPT Beijing China Decisions Networks and Analytics Laboratory SICS Stockholm Sweden Center for Data Science Pattern Recognition and Intelligent System Lab BUPT Beijing China
Cellular towers capture logs of mobile subscribers whenever their devices connect to the network. When the logs show data traffic at a cell tower generated by a device, it reveals that this device is close to the towe... 详细信息
来源: 评论
A random finite set model for data clustering
arXiv
收藏 引用
arXiv 2017年
作者: Phung, Dinh Vo, Ba-Ngu Center for Pattern Recognition and Data Analytics Deakin University Australia Department of Electrical and Computer Engineering Curtin University Australia
The goal of data clustering is to partition data points into groups to optimize a given objective function. While most existing clustering algorithms treat each data point as vector, in many applications each datum is... 详细信息
来源: 评论
Learning sparse latent representation and distance metric for image retrieval
Learning sparse latent representation and distance metric fo...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Tu Dinh Nguyen Truyen Tran Dinh Phung Svetha Venkatesh Center for Pattern Recognition and Data Analytics School of Information Technology Deakin University Geelong Australia Deakin University Burwood VIC AU
The performance of image retrieval depends critically on the semantic representation and the distance function used to estimate the similarity of two images. A good representation should integrate multiple visual and ... 详细信息
来源: 评论
Statistical latent space approach for mixed data modelling and applications
arXiv
收藏 引用
arXiv 2017年
作者: Nguyen, Tu Dinh Tran, Truyen Phung, Dinh Venkatesh, Svetha Center for Pattern Recognition and Data Analytics School of Information Technology Deakin University Geelong Australia Institute for Multi-Sensor Processing and Content Analysis Curtin University Australia
The analysis of mixed data has been raising challenges in statistics and machine learning. One of two most prominent challenges is to develop new statistical techniques and methodologies to effectively handle mixed da... 详细信息
来源: 评论
ENHANCING KERNEL FLEXIBILITY VIA LEARNING ASYMMETRIC LOCALLY-ADAPTIVE KERNELS
arXiv
收藏 引用
arXiv 2023年
作者: He, Fan He, Mingzhen Shi, Lei Huang, Xiaolin Suykens, Johan A.K. STADIUS Center for Dynamical Systems Signal Processing and Data Analytics KU Leuven Belgium Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China Shanghai Key Laboratory for Contemporary Applied Mathematics School of Mathematical Sciences Fudan University China
The lack of sufficient flexibility is the key bottleneck of kernel-based learning that relies on manually designed, pre-given, and non-trainable kernels. To enhance kernel flexibility, this paper introduces the concep... 详细信息
来源: 评论
Decentralized Kernel Ridge Regression Based on data-Dependent Random Feature
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Ruikai He, Fan He, Mingzhen Yang, Jie Huang, Xiaolin The Institute of Image Processing and Pattern Recognition The MOE Key Laboratory of System Control and Information Processing Shanghai Jiao Tong University Shanghai200240 China The STADIUS Center for Dynamical Systems Signal Processing and Data Analytics KU Leuven LeuvenB-3001 Belgium
Random feature (RF) has been widely used for node consistency in decentralized kernel ridge regression (KRR). Currently, the consistency is guaranteed by imposing constraints on coefficients of features, necessitating... 详细信息
来源: 评论