咨询与建议

限定检索结果

文献类型

  • 33 篇 会议
  • 10 篇 期刊文献

馆藏范围

  • 43 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 37 篇 工学
    • 28 篇 计算机科学与技术...
    • 26 篇 软件工程
    • 10 篇 信息与通信工程
    • 8 篇 生物医学工程(可授...
    • 4 篇 安全科学与工程
    • 3 篇 控制科学与工程
    • 2 篇 机械工程
    • 2 篇 光学工程
    • 2 篇 仪器科学与技术
    • 2 篇 生物工程
    • 1 篇 冶金工程
    • 1 篇 建筑学
  • 19 篇 理学
    • 16 篇 数学
    • 10 篇 统计学(可授理学、...
    • 3 篇 系统科学
    • 2 篇 生物学
    • 1 篇 物理学
  • 13 篇 管理学
    • 10 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 1 篇 公共管理
  • 5 篇 医学
    • 5 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 2 篇 经济学
    • 2 篇 应用经济学

主题

  • 4 篇 hospitals
  • 3 篇 predictive model...
  • 3 篇 data models
  • 2 篇 diagnosis
  • 2 篇 bayes methods
  • 2 篇 diseases
  • 1 篇 learning systems
  • 1 篇 support vector m...
  • 1 篇 logistics
  • 1 篇 video streaming
  • 1 篇 cancer
  • 1 篇 mood
  • 1 篇 deep neural netw...
  • 1 篇 indexes
  • 1 篇 sparse matrices
  • 1 篇 computer archite...
  • 1 篇 big data
  • 1 篇 anomaly detectio...
  • 1 篇 vector spaces
  • 1 篇 self-supervised ...

机构

  • 12 篇 center for patte...
  • 7 篇 center for patte...
  • 6 篇 center for patte...
  • 4 篇 institute for mu...
  • 2 篇 department of el...
  • 2 篇 monash universit...
  • 2 篇 center for patte...
  • 2 篇 shanghai key lab...
  • 2 篇 center for patte...
  • 2 篇 center for patte...
  • 1 篇 department of ra...
  • 1 篇 public health un...
  • 1 篇 department of ph...
  • 1 篇 department of in...
  • 1 篇 department of co...
  • 1 篇 department of co...
  • 1 篇 university centr...
  • 1 篇 national institu...
  • 1 篇 institute of adv...
  • 1 篇 institute of pub...

作者

  • 22 篇 phung dinh
  • 20 篇 venkatesh svetha
  • 13 篇 nguyen tu dinh
  • 11 篇 rana santu
  • 7 篇 tran truyen
  • 7 篇 svetha venkatesh
  • 6 篇 le trung
  • 6 篇 gupta sunil
  • 6 篇 dinh phung
  • 5 篇 nguyen vu
  • 4 篇 he fan
  • 4 篇 huang xiaolin
  • 4 篇 vu hung
  • 4 篇 he mingzhen
  • 3 篇 li cheng
  • 3 篇 gupta sunil kuma...
  • 3 篇 luo wei
  • 3 篇 truyen tran
  • 2 篇 vo ba-ngu
  • 2 篇 tu dinh nguyen

语言

  • 43 篇 英文
检索条件"机构=Center for Pattern Recognition and Data Analytics"
43 条 记 录,以下是41-50 订阅
排序:
Clustering patient medical records via sparse subspace representation
收藏 引用
17th Pacific-Asia Conference on Knowledge Discovery and data Mining, PAKDD 2013
作者: Saha, Budhaditya Pham, Duc-Son Phung, Dinh Venkatesh, Svetha Center for Pattern Recognition and Data Analytics School of Information Technology Deakin University Geelong VIC Australia Institute for Multi-sensor Processing and Content Analysis Department of Computing Curtin University WA Australia
The health industry is facing increasing challenge with "big data" as traditional methods fail to manage the scale and complexity. This paper examines clustering of patient records for chronic diseases to fa... 详细信息
来源: 评论
Learning sparse latent representation and distance metric for image retrieval
Learning sparse latent representation and distance metric fo...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Tu Dinh Nguyen Truyen Tran Dinh Phung Svetha Venkatesh Center for Pattern Recognition and Data Analytics School of Information Technology Deakin University Geelong Australia Deakin University Burwood VIC AU
The performance of image retrieval depends critically on the semantic representation and the distance function used to estimate the similarity of two images. A good representation should integrate multiple visual and ... 详细信息
来源: 评论
Large-scale statistical modeling of motion patterns: A Bayesian nonparametric approach  12
Large-scale statistical modeling of motion patterns: A Bayes...
收藏 引用
8th Indian Conference on Computer Vision, Graphics and Image Processing, ICVGIP 2012
作者: Rana, Santu Phung, Dinh Pham, Sonny Venkatesh, Svetha Center for Pattern Recognition and Data Analytics Deakin University Waurn Ponds VIC 3216 Australia Department of Computing Curtin University Bentley WA 6102 Australia
We propose a novel framework for large-scale scene understanding in static camera surveillance. Our techniques combine fast rank-1 constrained robust PCA to compute the foreground, with non-parametric Bayesian models ... 详细信息
来源: 评论