咨询与建议

限定检索结果

文献类型

  • 63 篇 会议
  • 21 篇 期刊文献

馆藏范围

  • 84 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 45 篇 工学
    • 29 篇 计算机科学与技术...
    • 28 篇 软件工程
    • 10 篇 机械工程
    • 6 篇 信息与通信工程
    • 5 篇 电子科学与技术(可...
    • 4 篇 控制科学与工程
    • 3 篇 化学工程与技术
    • 3 篇 生物工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 光学工程
    • 1 篇 仪器科学与技术
    • 1 篇 电气工程
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
  • 20 篇 理学
    • 13 篇 数学
    • 6 篇 物理学
    • 4 篇 生物学
    • 3 篇 化学
    • 2 篇 系统科学
  • 8 篇 管理学
    • 5 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 23 篇 pattern recognit...
  • 17 篇 machine intellig...
  • 17 篇 character recogn...
  • 11 篇 face recognition
  • 10 篇 image segmentati...
  • 9 篇 handwriting reco...
  • 9 篇 feature extracti...
  • 7 篇 computer science
  • 7 篇 text analysis
  • 6 篇 neural networks
  • 6 篇 optical characte...
  • 5 篇 image analysis
  • 4 篇 databases
  • 4 篇 fractals
  • 4 篇 image recognitio...
  • 4 篇 pattern analysis
  • 4 篇 shape
  • 3 篇 support vector m...
  • 3 篇 hidden markov mo...
  • 3 篇 application soft...

机构

  • 10 篇 center for patte...
  • 8 篇 center for patte...
  • 6 篇 center for patte...
  • 4 篇 department of co...
  • 4 篇 center for patte...
  • 4 篇 department of co...
  • 4 篇 department of ma...
  • 4 篇 center for patte...
  • 3 篇 center for patte...
  • 2 篇 laboratory for i...
  • 2 篇 center of patter...
  • 2 篇 center for artif...
  • 2 篇 center of patter...
  • 2 篇 deptartment of c...
  • 2 篇 school of mathem...
  • 2 篇 center for patte...
  • 2 篇 centre for patte...
  • 2 篇 department of co...
  • 2 篇 department of ma...
  • 2 篇 center of patter...

作者

  • 20 篇 c.y. suen
  • 15 篇 suen ching y.
  • 11 篇 vinay a.
  • 10 篇 s natarajan
  • 9 篇 natarajan s.
  • 8 篇 vinay a
  • 7 篇 y.y. tang
  • 7 篇 k n balasubraman...
  • 6 篇 ching y. suen
  • 6 篇 suen c.y.
  • 4 篇 t.d. bui
  • 4 篇 kim soo h.
  • 3 篇 murthy k.n. bala...
  • 3 篇 hong ma
  • 3 篇 j. sadri
  • 3 篇 bharadwaj aprame...
  • 3 篇 ma hong
  • 3 篇 tang y.y.
  • 3 篇 s.h. kim
  • 2 篇 zhou jie

语言

  • 84 篇 英文
检索条件"机构=Center for Pattern Recognition and Machine Intelligence PES University"
84 条 记 录,以下是11-20 订阅
排序:
Deep Learning on Binary patterns for Face recognition
Deep Learning on Binary Patterns for Face Recognition
收藏 引用
2018 International Conference on Computational intelligence and Data Science, ICCIDS 2018
作者: Vinay, A. Gupta, Abhijay Bharadwaj, Aprameya Srinivasan, Arvind Murthy, K.N. Balasubramanya Natarajan, S. Center for Pattern Recognition and Machine Intelligence PES University Bengaluru India
In this paper an efficient and robust method for real-time face recognition is proposed. As a part of pre-processing to remove noise and unwanted features, a filter is applied to the images of standard datasets. Subse... 详细信息
来源: 评论
Sparse Locally Adaptive Regression Kernel for Face Verification
Sparse Locally Adaptive Regression Kernel for Face Verificat...
收藏 引用
2018 International Conference on Computational intelligence and Data Science, ICCIDS 2018
作者: Vinay, A. Kamath, Vinayaka R. Varun, M. Murthy, K.N. Balasubramanya Natarajan, S. Center for Pattern Recognition and Machine Intelligence PES University Bengaluru India
The paper presents several thresholds obtained by heuristic approach for face verification using Locally Adaptive Regression Kernel (LARK) descriptors for euclidean, cosine and chebyshev distance metrics. The absence ... 详细信息
来源: 评论
On Detectors and Descriptors based Techniques for Face recognition
On Detectors and Descriptors based Techniques for Face Recog...
收藏 引用
2018 International Conference on Computational intelligence and Data Science, ICCIDS 2018
作者: Vinay, A. Aklecha, Nishant Meghana Murthy, K.N. Balasubramanya Natarajan, S. Center for Pattern Recognition and Machine Intelligence PES University Bengaluru India
Out of all forms of biometrics, Face recognition (FR) emerges as the most incredible one. Apart from offering revolutionary applications for business and law-enforcement purposes, it has also opened numerous research ... 详细信息
来源: 评论
Face recognition using interest points and ensemble of classifiers  4
Face recognition using interest points and ensemble of class...
收藏 引用
4th IEEE International Conference on Recent Advances in Information Technology, RAIT 2018
作者: Vinay, A. Sampat, Pratik Rajesh Belavadi, Sagar V. Pratik, R. Rao, B. S. Nikitha Ragesh, Rahul Murthy, K. N. Balasubramanya Natarajan, S. Centre for Pattern Recognition and Machine Intelligence PES University Bangalore Karnataka India
In human beings, it is the responsibility of the temporal lobe of the brain for recognition of faces. Certain features of the face trigger the neurons of the temporal lobe which are then stored. These eventually lead ... 详细信息
来源: 评论
Vocabulary Trees with OSS Detectors
收藏 引用
Procedia Computer Science 2019年 152卷 282-290页
作者: A Vinay Harshith R Acharya Harshita Singh Vibha Satyanarayana K N B Murthy S Natarajan Deptartment of Computer Science PES University Banashankari 3rd Stage Bangalore 560085 Karnataka India Center for Pattern Recognition and Machine Intelligence PES University Banashankari 3rd Stage Bangalore 560085 Karnataka India
In today’s diversified world, with every person having their own idiosyncratic identity, the field of face detection and recognition has received significant scope. Since birth, humans develop and harvest similar fac... 详细信息
来源: 评论
On Detectors and Descriptors based Techniques for Face recognition
收藏 引用
Procedia Computer Science 2018年 132卷 908-917页
作者: Vinay A Nishant Aklecha Meghana K.N. Balasubramanya Murthy S Natarajan Center for Pattern Recognition and Machine Intelligence PES University Bengaluru India
Out of all forms of biometrics, Face recognition (FR) emerges as the most incredible one. Apart from offering revolutionary applications for business and law-enforcement purposes, it has also opened numerous research ... 详细信息
来源: 评论
Deep Learning on Binary patterns for Face recognition
收藏 引用
Procedia Computer Science 2018年 132卷 76-83页
作者: A Vinay Abhijay Gupta Aprameya Bharadwaj Arvind Srinivasan K N Balasubramanya Murthy S Natarajan Center for Pattern Recognition and Machine Intelligence PES University Bengaluru India
In this paper an efficient and robust method for real-time face recognition is proposed. As a part of pre-processing to remove noise and unwanted features, a filter is applied to the images of standard datasets. Subse... 详细信息
来源: 评论
Sparse Locally Adaptive Regression Kernel For Face Verification
收藏 引用
Procedia Computer Science 2018年 132卷 890-899页
作者: Vinay A Vinayaka R Kamath Varun M K N Balasubramanya Murthy S Natarajan Center for Pattern Recognition and Machine Intelligence PES University Bengaluru India
The paper presents several thresholds obtained by heuristic approach for face verification using Locally Adaptive Regression Kernel (LARK) descriptors for euclidean, cosine and chebyshev distance metrics. The absence ... 详细信息
来源: 评论
Deep learning driven interpretable and informed decision making model for brain tumour prediction using explainable AI
收藏 引用
Scientific reports 2025年 第1期15卷 19223页
作者: Khan Muhammad Adnan Taher M Ghazal Muhammad Saleem Muhammad Sajid Farooq Chan Yeob Yeun Munir Ahmad Sang-Woong Lee Pattern Recognition and Machine Learning Lab Faculty of Artificial Intelligence and Software Gachon University Seongnam-si 13557 Republic of Korea. Department of Networks and Cybersecurity Hourani Center for Applied Scientific Research Al-Ahliyya Amman University Amman 19111 Jordan. Chitkara University Institute of Engineering and Technology Chitkara University Rajpura Punjab 140401 India. Department of Cyber Security NASTP Institute of Information Technology Lahore 58810 Pakistan. Center for Secure Cyber-Physical Systems (C2PS) Computer Science Department Khalifa University Abu Dhabi United Arab Emirates. chan.yeun@ku.ac.ae. University College Korea University Seoul 02841 Republic of Korea. Pattern Recognition and Machine Learning Lab Faculty of Artificial Intelligence and Software Gachon University Seongnam-si 13557 Republic of Korea. slee@gachon.ac.kr.
Brain Tumours are highly complex, particularly when it comes to their initial and accurate diagnosis, as this determines patient prognosis. Conventional methods rely on MRI and CT scans and employ generic machine lear... 详细信息
来源: 评论
Unconstrained Face recognition using ASURF and Cloud-Forest Classifier optimized with VLAD
收藏 引用
Procedia Computer Science 2018年 143卷 570-578页
作者: Vinay A Aviral Joshi Hardik Mahipal Surana Harsh Garg K N Balasubramanya Murthy S Natarajan Center for Pattern Recognition and Machine Intelligence PES University Bangalore 560085 India
The paper posits a computationally-efficient algorithm for multi-class facial image classification in which images are constrained with translation, rotation, scale, color, illumination and affine distortion. The prop... 详细信息
来源: 评论