Multiple Instance Learning (MIL) has been widely applied in practice, such as drug activity prediction, content-based image retrieval. In MIL, a sample, comprised of a set of instances, is called a bag. Labels are ass...
详细信息
ISBN:
(纸本)9781479923427
Multiple Instance Learning (MIL) has been widely applied in practice, such as drug activity prediction, content-based image retrieval. In MIL, a sample, comprised of a set of instances, is called a bag. Labels are assigned to bags instead of instances. The uncertainty of labels on instances makes MIL different from conventional supervised single instance learning (SIL) tasks. Therefore, it is critical to learn an effective mapping to convert an MIL task to an SIL task. In this paper, we present OptMILES by learning the optimal transformation on the bag-to-instance similarity measure, exploring the optimal distance metric between instances, by an alternating minimization training procedure. We thoroughly evaluate the proposed method on both a synthetic dataset and real world datasets by comparing with representative MIL algorithms. The experimental results suggest the effectiveness of OptMILES.
Randomized neural network (RNN) is a highly feasible solution in the era of big data because it offers a simple and fast working principle in processing dynamic and evolving data streams. This paper proposes a novel R...
详细信息
ISBN:
(纸本)9781509061839
Randomized neural network (RNN) is a highly feasible solution in the era of big data because it offers a simple and fast working principle in processing dynamic and evolving data streams. This paper proposes a novel RNN, namely recurrent type-2 random vector functional link network (RT2McRVFLN), which provides a highly scalable solution for data streams in a strictly online and integrated framework. It is built upon the psychologically inspired concept of metacognitive learning, which covers three basic components of human learning: what-to-learn, how-to-learn, and when-to-learn. The what-to-learn selects important samples on the fly with the use of online active learning scenario, which renders our algorithm an online semi-supervised algorithm. The how-to-learn process combines an open structure of evolving concept and a randomized learning algorithm of random vector functional link network (RVFLN). The efficacy of the RT2McRVFLN has been numerically validated through two real-world case studies and comparisons with its counterparts, which arrive at a conclusive finding that our algorithm delivers a tradeoff between accuracy and simplicity.
作者:
Duo ChenJun ChengDacheng TaoCollege of Communication Engineering
Chongqing University Chongqing 400044 China. He is also with the Shenzhen Key Laboratory of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences. Shenzhen Institutes of Advanced Technology
Chinese Academy of Sciences Shenzhen 518055 China. He is also with the Chinese University of Hong Kong and Guangdong Provincial Key Laboratory of Robotics and Intelligent System. Center for Quantum Computation and Intelligent System
Faculty of Engineering and Information Technology University of Technology Sydney New South Wales 2007 Australia.
To facilitate human-robot interactions, human gender information is very important. Motivated by the success of manifold learning for visual recognition, we present a novel clustering-based discriminative locality ali...
详细信息
ISBN:
(数字)9781467317368
ISBN:
(纸本)9781467317375
To facilitate human-robot interactions, human gender information is very important. Motivated by the success of manifold learning for visual recognition, we present a novel clustering-based discriminative locality alignment (CDLA) algorithm to discover the low-dimensional intrinsic submanifold from the embedding high-dimensional ambient space for improving the face gender recognition performance. In particular, CDLA exploits the global geometry through k-means clustering, extracts the discriminative information through margin maximization and explores the local geometry through intra cluster sample concentration. These three properties uniquely characterize CDLA for face gender recognition. The experimental results obtained from the FERET data sets suggest the superiority of the proposed method in terms of recognition speed and accuracy by comparing with several representative methods.
暂无评论