咨询与建议

限定检索结果

文献类型

  • 168 篇 期刊文献
  • 70 篇 会议
  • 7 册 图书

馆藏范围

  • 245 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 158 篇 工学
    • 81 篇 计算机科学与技术...
    • 63 篇 软件工程
    • 28 篇 信息与通信工程
    • 24 篇 光学工程
    • 23 篇 电气工程
    • 23 篇 电子科学与技术(可...
    • 15 篇 仪器科学与技术
    • 15 篇 材料科学与工程(可...
    • 15 篇 控制科学与工程
    • 14 篇 生物医学工程(可授...
    • 14 篇 生物工程
    • 12 篇 力学(可授工学、理...
    • 12 篇 动力工程及工程热...
    • 10 篇 机械工程
    • 9 篇 土木工程
    • 9 篇 航空宇航科学与技...
    • 6 篇 建筑学
  • 135 篇 理学
    • 76 篇 物理学
    • 44 篇 数学
    • 18 篇 统计学(可授理学、...
    • 17 篇 生物学
    • 14 篇 化学
    • 14 篇 地球物理学
    • 9 篇 系统科学
  • 26 篇 管理学
    • 15 篇 管理科学与工程(可...
    • 10 篇 图书情报与档案管...
    • 9 篇 工商管理
  • 14 篇 医学
    • 13 篇 临床医学
    • 12 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
  • 6 篇 教育学
  • 4 篇 军事学
  • 3 篇 农学
  • 2 篇 经济学

主题

  • 8 篇 computational mo...
  • 7 篇 computational in...
  • 6 篇 hadron colliders
  • 6 篇 artificial intel...
  • 5 篇 analytical model...
  • 5 篇 machine learning
  • 5 篇 interferometers
  • 3 篇 nasa
  • 3 篇 safety
  • 3 篇 students
  • 3 篇 biological syste...
  • 3 篇 tumors
  • 3 篇 cloud computing
  • 3 篇 molecular dynami...
  • 3 篇 solid modeling
  • 3 篇 monte carlo meth...
  • 3 篇 beamforming
  • 3 篇 gamma rays
  • 2 篇 computer simulat...
  • 2 篇 computer science

机构

  • 9 篇 kavli institute ...
  • 8 篇 institute of phy...
  • 8 篇 national astrono...
  • 8 篇 school of astron...
  • 7 篇 department of as...
  • 7 篇 department of ph...
  • 7 篇 yerevan physics ...
  • 7 篇 department of ph...
  • 7 篇 shanghai astrono...
  • 7 篇 department of ph...
  • 7 篇 school of comput...
  • 7 篇 graduate school ...
  • 7 篇 kamioka branch n...
  • 6 篇 yuseong-gu daeje...
  • 6 篇 national institu...
  • 6 篇 department of ph...
  • 6 篇 sungkyunkwan uni...
  • 6 篇 zhejiang univers...
  • 6 篇 2-21-1 osawa mit...
  • 6 篇 kyungpook nation...

作者

  • 18 篇 kimura n.
  • 17 篇 ohkawa m.
  • 17 篇 miyoki s.
  • 17 篇 oohara k.
  • 17 篇 hayama k.
  • 17 篇 aso y.
  • 16 篇 kokeyama k.
  • 15 篇 sato s.
  • 15 篇 cannon k.
  • 15 篇 morisaki s.
  • 15 篇 michimura y.
  • 14 篇 lin c.-y.
  • 14 篇 takahashi h.
  • 14 篇 suzuki t.
  • 14 篇 nakano h.
  • 13 篇 oh j.j.
  • 13 篇 tagoshi h.
  • 13 篇 mio n.
  • 12 篇 fujii y.
  • 12 篇 hasegawa k.

语言

  • 232 篇 英文
  • 13 篇 其他
检索条件"机构=Center for Research in Modeling & Simulation 2 Electrical Engineering and Computer Science"
245 条 记 录,以下是31-40 订阅
排序:
Neuro-symbolic Explainable Artificial Intelligence Twin for Zero-touch IoE in Wireless Network
arXiv
收藏 引用
arXiv 2022年
作者: Munir, Shirajum Kim, Ki Tae Adhikary, Apurba Saad, Walid Shetty, Sachin Park, Seong-Bae Hong, Choong Seon Virginia Modeling Analysis and Simulation Center Department of Computational Modeling and Simulation Engineering Old Dominion University SuffolkVA23435 United States Department of Computer Science and Engineering Kyung Hee University Yongin-si17104 Korea Republic of Department of Computer Science and Engineering School of Computing Kyung Hee University Kyung Hee University Yongin-si17104 Korea Republic of Wireless@VT Group Bradley Department of Electrical and Computer Engineering Virginia Tech ArlingtonVA22203 United States
Explainable artificial intelligence (XAI) twin systems will be a fundamental enabler of zero-touch network and service management (ZSM) for sixth-generation (6G) wireless networks. A reliable XAI twin system for ZSM r... 详细信息
来源: 评论
Detecting Characteristic Points for the Analysis of Bioimpedance Signal Through a Synergy of Fuzzy Rule-based models and Granular Neural Networks
收藏 引用
IEEE Transactions on Fuzzy Systems 2024年
作者: Wang, Dan Richter, Monika Zhu, Xiubin Pedrycz, Witold Gacek, Adam Sobotnicki, Aleksander Li, Zhiwu Xi'an University of Science and Technology College of Computer Science and Technology Xi'an710054 China Center for Biomedical Engineering Lukasiewicz Research Network-Krakow Institute of Technology Zabrze41-800 Poland Xidian University School of Mechano-Electronic Engineering Xi'an710071 China University of Alberta Department of Electrical and Computer Engineering EdmontonABT6R 2V4 Canada Polish Academy of Sciences Systems Research Institute Warsaw00-901 Poland Istinye University Faculty of Engineering and Natural Sciences Department of Computer Engineering Sariyer Istanbul Turkey Macau University of Science and Technology Institute of Systems Engineering Taipa China
In this study, we propose a novel methodology for determining accurate positions of characteristic points encountered in the analysis of bioimpedance signals. The proposed approach fully utilizes two fundamental model... 详细信息
来源: 评论
DPA-2:a large atomic model as a multitask learner
收藏 引用
npj Computational Materials 2024年 第1期10卷 185-199页
作者: Duo Zhang Xinzijian Liu Xiangyu Zhang Chengqian Zhang Chun Cai Hangrui Bi Yiming Du Xuejian Qin Anyang Peng Jiameng Huang Bowen Li Yifan Shan Jinzhe Zeng Yuzhi Zhang Siyuan Liu Yifan Li Junhan Chang Xinyan Wang Shuo Zhou Jianchuan Liu Xiaoshan Luo Zhenyu Wang Wanrun Jiang Jing Wu Yudi Yang Jiyuan Yang Manyi Yang Fu-Qiang Gong Linshuang Zhang Mengchao Shi Fu-Zhi Dai Darrin M.York Shi Liu Tong Zhu Zhicheng Zhong Jian Lv Jun Cheng Weile Jia Mohan Chen Guolin Ke Weinan E Linfeng Zhang Han Wang AI for Science Institute BeijingP.R.China DP Technology BeijingP.R.China Academy for Advanced Interdisciplinary Studies Peking UniversityBeijingP.R.China State Key Lab of Processors Institute of Computing TechnologyChinese Academy of SciencesBeijingP.R.China University of Chinese Academy of Sciences BeijingP.R.China HEDPS CAPTCollege of EngineeringPeking UniversityBeijingP.R.China Ningbo Institute of Materials Technology and Engineering Chinese Academy of SciencesNingboP.R.China CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology Chinese Academy of SciencesNingboP.R.China School of Electronics Engineering and Computer Science Peking UniversityBeijingP.R.China Shanghai Engineering Research Center of Molecular Therapeutics&New Drug Development School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiP.R.China Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine and Department of Chemistry and Chemical BiologyRutgers UniversityPiscatawayNJUSA Department of Chemistry Princeton UniversityPrincetonNJUSA College of Chemistry and Molecular Engineering Peking UniversityBeijingP.R.China Yuanpei College Peking UniversityBeijingP.R.China School of Electrical Engineering and Electronic Information Xihua UniversityChengduP.R.China State Key Laboratory of Superhard Materials College of PhysicsJilin UniversityChangchunP.R.China Key Laboratory of Material Simulation Methods&Software of Ministry of Education College of PhysicsJilin UniversityChangchunP.R.China International Center of Future Science Jilin UniversityChangchunP.R.China Key Laboratory for Quantum Materialsof Zhejiang Province Department of PhysicsSchool of ScienceWestlake UniversityHangzhouP.R.China Atomistic Simulations Italian Institute of TechnologyGenovaItaly State Key Laboratory of Physical Chemistry of Solid Surface iChEMCollege of Chemistry and Chemical EngineeringXiame
The rapid advancements in artificial intelligence(AI)are catalyzing transformative changes in atomic modeling,simulation,and ***-driven potential energy models havedemonstrated the capability to conduct large-scale,lo... 详细信息
来源: 评论
DarSIA: An open-source Python toolbox for two-scale image processing of dynamics in porous media
arXiv
收藏 引用
arXiv 2023年
作者: Nordbotten, Jan Martin Benali, Benyamine Both, Jakub Wiktor Brattekås, Bergit Storvik, Erlend Fernø, Martin A. Center for Modeling of Coupled Subsurface Dynamics Dept. of Mathematics University of Bergen Norway Norwegian Research Center Postboks 22 Nygårdstangen Bergen5838 Norway Department of Physics and Technology University of Bergen Norway Department of Computer science Electrical engineering and Mathematical sciences Western Norway University of Applied Sciences Norway
Understanding porous media flow is inherently a multi-scale challenge, where at the core lies the aggregation of pore-level processes to a continuum, or Darcy-scale, description. This challenge is directly mirrored in... 详细信息
来源: 评论
FedAG:A Federated Learning Method Based on Data Importance Weighted Aggregation
FedAG:A Federated Learning Method Based on Data Importance W...
收藏 引用
IEEE International Conference on Communications in China (ICCC)
作者: Mengchu Xu Yan Zeng Meiting Xue Ji-Lin Zhang Jian Wan Mingyao Zhou Yilin Wen Yukun Shi School of Computer Science and Technology Hangzhou Dianzi University Hangzhou China Key Laboratory of Complex Systems Modeling and Simulation Ministry of Education Hangzhou China Zhejiang Engineering Research Center of Data Security Governance Hangzhou China School of Cyberspace Hangzhou Dianzi University Hangzhou China Huawei Enterprise Communication Technology Co Hangzhou China
Federated learning is a distributed machine learning approach that trains models with multiple clients and data locally. However, the existing methods ignore the differences between local models caused by the data het...
来源: 评论
Synthesising 3D Cardiac CINE-MR Images and Corresponding Segmentation Masks using a Latent Diffusion Model
Synthesising 3D Cardiac CINE-MR Images and Corresponding Seg...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Nina Cheng Zhengji Liu Yash Deo Haoran Dou Ning Bi Kun Wu Fengming Lin Zeike A Taylor Nishant Ravikumar Alejandro F Frangi CISTIB Centre for Computational Imaging and Simulation Technologies in Biomedicine University of Leeds School of Optometry The Hong Kong Polytechnic University NIHR Leeds Biomedical Research Centre Leeds UK Alan Turing Institute London UK Division of Informatics Imaging and Data Science Schools of Computer Science and Health Sciences University of Manchester Manchester UK Cardiovascular Sciences Departments Medical Imaging Research Center (MIRC) Electrical Engineering KU Leuven Leuven Belgium
We propose a novel pipeline for the generation of synthetic full spatial cine cardiac magnetic resonance (CMR) images via a latent Denoising Diffusion Implicit Models (DDIMs). These synthetic images can be used as via... 详细信息
来源: 评论
Applications of MXenes in human-like sensors and actuators
收藏 引用
Nano research 2023年 第4期16卷 5767-5795页
作者: Jinbo Pang Songang Peng Chongyang Hou Xiao Wang Ting Wang Yu Cao Weijia Zhou Ding Sun Kai Wang Mark H.Rümmeli Gianaurelio Cuniberti Hong Liu Institute for Advanced Interdisciplinary Research(iAIR) Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongUniversity of JinanJinan 250022China Institute for Materials Science and Max Bergmann Center of Biomaterials Technische Universität DresdenDresden 01069Germany Center for Advancing Electronics Dresden Technische Universität DresdenDresden 01069Germany Dresden Center for Computational Materials Science Technische Universität DresdenDresden 01062Germany Dresden Center for Intelligent Materials(GCL DCIM) Technische Universität DresdenDresden 01062Germany High-Frequency High-Voltage Device and Integrated Circuits R&D Center Institute of MicroelectronicsChinese Academy of SciencesBeijing 100029China Key Laboratory of Microelectronic Devices&Integrated Technology Institute of MicroelectronicsChinese Academy of SciencesBeijing 100029China Shenzhen Key Laboratory of Nanobiomechanics Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen 518055China State Key Laboratory of Biobased Material and Green Papermaking Qilu University of TechnologyShandong Academy of SciencesJinan 250353China School of Bioengineering Qilu University of TechnologyShandong Academy of ScienceJinan 250353China Key Laboratory of Modern Power System Simulation and Control&Renewable Energy Technology(Ministry of Education) Northeast Electric Power UniversityJilin 132012China School of Electrical Engineering Northeast Electric Power UniversityJilin 132012China School of Electrical Engineering Weihai Innovation Research InstituteQingdao UniversityQingdao 266000China School of Electrical and Computer Engineering Jilin Jianzhu UniversityChangchun 130118China Institute for Complex Materials Leibniz Institute for Solid State and Materials Research Dresden(IFW Dresden)20 Helmholtz StrasseDresden 01069Germany College of Energy Soochow Institute for Energy and Materials Innovations Soochow UniversitySuzhou 215006China Key L
Human beings perceive the world through the senses of sight,hearing,smell,taste,touch,space,and *** first five senses are prerequisites for people to *** sensing organs upload information to the nervous systems,includ... 详细信息
来源: 评论
Chances and Challenges of ChatGPT and Similar Models for Education in M&S
Chances and Challenges of ChatGPT and Similar Models for Edu...
收藏 引用
simulation Winter Conference
作者: Andreas Tolk Philip Barry Margaret L. Loper Ghaith Rabadi William T. Scherer Levent Yilmaz Modeling and Analysis Innovation Center The MITRE Corporation Charlottesville VA USA Mission Analysis Group L3Harris Corporation Herndon VA USA Georgia Tech Research Institute Georgia Institute of Technology Atlanta GA USA University of Central Florida School of Modeling Simulation and Training Orlando FL USA Department of Systems and Information Engineering University of Virgina Charlottesville VA USA Samuel Ginn College of Engineering Computer Science and Software Engineering Auburn University Auburn AL USA
This position paper summarizes the inputs of a group of experts from academia and industry presenting their view on chances and challenges of using ChatGPT within modeling and simulation education. The experts also ad...
来源: 评论
An Auto-Parallel Method for Deep Learning Models Based on Genetic Algorithm
An Auto-Parallel Method for Deep Learning Models Based on Ge...
收藏 引用
International Conference on Parallel and Distributed Systems (ICPADS)
作者: Yan Zeng ChengChuang Huang YiJie Ni ChunBao Zhou JiLin Zhang Jue Wang MingYao Zhou MeiTing Xue YunQuan Zhang School of Computer Science and Technology Hangzhou Dianzi University Hangzhou China Key Laboratory for Modeling and Simulation of Complex Systems Ministry of Education Hangzhou China Data Security Governance Zhejiang Engineering Research Center Hangzhou China School of ITMO Joint Institute Hangzhou Dianzi University Hangzhou China Institute of Computer Network Information Center of the Chinese Academy of Sciences Beijing China HuaWei State Key Laboratory of Computer Architecture Institute of Computing Technology of the Chinese Academy of Sciences Beijing China
As the size of datasets and neural network models increases, automatic parallelization methods for models have become a research hotspot in recent years. The existing auto-parallel methods based on machine learning or...
来源: 评论
GWO-based modeling of an Unstable Transport System  9th
GWO-based Modeling of an Unstable Transport System
收藏 引用
9th International Conference on Information Technology and Quantitative Management, ITQM 2022
作者: Gale-Cazan, Cristiana-Bogdana Bojan-Dragos, Claudia-Adina Precup, Radu-Emil Roman, Raul-Cristian Petriu, Emil M Szedlak-Stinean, Alexandra-Iulia Politehnica University of Timisoara Dept. Automation and Applied Informatics Bd. V. Parvan 2 Timisoara300223 Romania Center for Fundamental and Advanced Technical Research Romanian Academy Timisoara Branch Bd. Mihai Viteazu 24 Timisoara300223 Romania University of Ottawa School of Electrical Engineering and Computer Science 800 King Eduard OttawaONK1N 6N5 Canada
The goal of this paper is to obtain optimal models of an unstable transport system, which is a nonlinear process represented by the two-wheeled unstable transport system. An optimization problem is defined in order to... 详细信息
来源: 评论