咨询与建议

限定检索结果

文献类型

  • 1,585 篇 期刊文献
  • 832 篇 会议
  • 10 册 图书

馆藏范围

  • 2,427 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,472 篇 工学
    • 942 篇 计算机科学与技术...
    • 770 篇 软件工程
    • 265 篇 信息与通信工程
    • 205 篇 电气工程
    • 183 篇 电子科学与技术(可...
    • 176 篇 生物工程
    • 147 篇 光学工程
    • 147 篇 生物医学工程(可授...
    • 135 篇 控制科学与工程
    • 95 篇 化学工程与技术
    • 74 篇 材料科学与工程(可...
    • 68 篇 动力工程及工程热...
    • 63 篇 机械工程
    • 57 篇 仪器科学与技术
    • 45 篇 土木工程
  • 1,159 篇 理学
    • 523 篇 数学
    • 474 篇 物理学
    • 227 篇 生物学
    • 162 篇 统计学(可授理学、...
    • 152 篇 地球物理学
    • 122 篇 化学
    • 78 篇 系统科学
  • 303 篇 管理学
    • 180 篇 管理科学与工程(可...
    • 129 篇 图书情报与档案管...
    • 74 篇 工商管理
  • 184 篇 医学
    • 153 篇 临床医学
    • 110 篇 基础医学(可授医学...
    • 63 篇 药学(可授医学、理...
    • 60 篇 公共卫生与预防医...
  • 56 篇 法学
    • 46 篇 社会学
  • 38 篇 农学
  • 28 篇 经济学
  • 22 篇 教育学
  • 6 篇 军事学
  • 5 篇 文学
  • 1 篇 艺术学

主题

  • 62 篇 machine learning
  • 58 篇 feature extracti...
  • 50 篇 semantics
  • 49 篇 deep learning
  • 47 篇 computational mo...
  • 43 篇 accuracy
  • 37 篇 training
  • 30 篇 federated learni...
  • 28 篇 predictive model...
  • 27 篇 deep neural netw...
  • 27 篇 data models
  • 26 篇 gravitational wa...
  • 25 篇 image segmentati...
  • 23 篇 visualization
  • 22 篇 memory managemen...
  • 22 篇 graph neural net...
  • 21 篇 optimization
  • 21 篇 artificial intel...
  • 21 篇 gravity waves
  • 20 篇 data mining

机构

  • 100 篇 national enginee...
  • 72 篇 shandong provinc...
  • 56 篇 school of comput...
  • 46 篇 shandong enginee...
  • 41 篇 key laboratory o...
  • 39 篇 university of ch...
  • 35 篇 national enginee...
  • 32 篇 nasa goddard spa...
  • 32 篇 school of cyber ...
  • 28 篇 college of compu...
  • 27 篇 dipartimento di ...
  • 27 篇 huazhong univers...
  • 27 篇 department of ph...
  • 27 篇 services computi...
  • 27 篇 hubei engineerin...
  • 26 篇 the oskar klein ...
  • 26 篇 hubei key labora...
  • 26 篇 hiroshima astrop...
  • 25 篇 department of ph...
  • 24 篇 department of ph...

作者

  • 94 篇 hai jin
  • 89 篇 jin hai
  • 38 篇 xiaofei liao
  • 26 篇 e. j. siskind
  • 25 篇 cheng xueqi
  • 25 篇 r. bellazzini
  • 23 篇 j. b. thayer
  • 22 篇 shen huawei
  • 22 篇 p. spinelli
  • 22 篇 m. kuss
  • 22 篇 hu shengshan
  • 21 篇 r. buehler
  • 21 篇 long zheng
  • 21 篇 s. guiriec
  • 21 篇 s. rainò
  • 20 篇 p. a. caraveo
  • 20 篇 p. f. michelson
  • 20 篇 h. takahashi
  • 20 篇 s. ciprini
  • 20 篇 r. rando

语言

  • 2,266 篇 英文
  • 140 篇 其他
  • 37 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 日文
检索条件"机构=Center for Scientific Computing and Data Science Research"
2427 条 记 录,以下是1-10 订阅
RE-SEGNN:recurrent semantic evidence-aware graph neural network for temporal knowledge graph forecasting
收藏 引用
science China(Information sciences) 2025年 第2期68卷 103-119页
作者: Wenyu CAI Mengfan LI Xuanhua SHI Yuanxin FAN Quntao ZHU Hai JIN National Engineering Research Center for Big Data Technology and System Services Computing Technology and System LabCluster and Grid Computing LabSchool of Computer Science and TechnologyHuazhong University of Science and Technology
Temporal knowledge graph(TKG) reasoning, has seen widespread use for modeling real-world events, particularly in extrapolation settings. Nevertheless, most previous studies are embedded models, which require both enti... 详细信息
来源: 评论
Solving key challenges in collider physics with foundation models
收藏 引用
Physical Review D 2025年 第5期111卷 L051504-L051504页
作者: Vinicius Mikuni Benjamin Nachman National Energy Research Scientific Computing Center Berkeley Lab Berkeley California 94720 USA Physics Division Lawrence Berkeley National Laboratory Berkeley California 94720 USA Berkeley Institute for Data Science University of California Berkeley California 94720 USA
Foundation models are neural networks that are capable of simultaneously solving many problems. Large language foundation models like ChatGPT have revolutionized many aspects of daily life, but their impact for scienc...
来源: 评论
Soft-GNN:towards robust graph neural networks via self-adaptive data utilization
收藏 引用
Frontiers of Computer science 2025年 第4期19卷 1-12页
作者: Yao WU Hong HUANG Yu SONG Hai JIN National Engineering Research Center for Big Data Technology and System Service Computing Technology and System LabCluster and Grid Computing LabSchool of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhan 430074China College of Information and Communication National University of Defense TechnologyWuhan 430019China Department of Computer Science and Operations Research Universitéde MontréalMontreal H3C 3J7Canada
Graph neural networks(GNNs)have gained traction and have been applied to various graph-based data analysis tasks due to their high ***,a major concern is their robustness,particularly when faced with graph data that h... 详细信息
来源: 评论
AegonKV: A High Bandwidth, Low Tail Latency, and Low Storage Cost KV-Separated LSM Store with SmartSSD-based GC Offloading  23
AegonKV: A High Bandwidth, Low Tail Latency, and Low Storage...
收藏 引用
23rd USENIX Conference on File and Storage Technologies, FAST 2025
作者: Duan, Zhuohui Feng, Hao Liu, Haikun Liao, Xiaofei Jin, Hai Li, Bangyu National Engineering Research Center for Big Data Technology and System Service Computing Technology and System Lab/Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology China
The key-value separation is renowned for its significant mitigation of the write amplification inherent in traditional LSM trees. However, KV separation potentially increases performance overhead in the management of ... 详细信息
来源: 评论
A numerical magnitude aware multi-channel hierarchical encoding network for math word problem solving
收藏 引用
Neural computing and Applications 2025年 第3期37卷 1651-1672页
作者: Xu, Junjie Chen, Yuzhong Xiao, Lingsheng Liao, Hongmiao Zhong, Jiayuan Dong, Chen College of Computer and Data Science Fuzhou University Fujian Province Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou China Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fujian Province Fuzhou350108 China
Math word problem (MWP) represents a critical research area within reading comprehension, where accurate comprehension of math problem text is crucial for generating math expressions. However, current approaches still... 详细信息
来源: 评论
Impact of Planar Defects on the Reversal Time of Single Magnetic Domain Nanoparticles
收藏 引用
Physical Review Letters 2025年 第13期134卷 136702-136702页
作者: Hugo Bocquet Armin Kleibert Peter M. Derlet PSI Center for Scientific Computing Theory and Data 5232 Villigen PSI Switzerland PSI Center for Photon Science 5232 Villigen PSI Switzerland
Recent experimental investigations of individual magnetic nanoparticles reveal a diverse range of magnetic relaxation times which cannot be explained by considering their size, shape, and surface anisotropy, suggestin...
来源: 评论
FedHKD: A Hierarchical Federated Learning Approach Integrating Clustering and Knowledge Distillation for Non-IID data  1
收藏 引用
2nd International Conference on Artificial Intelligence Security and Privacy, AIS and P 2024
作者: Hu, Shiwen Wang, Changji Li, Yuan Liu, Zhen Liu, Ning Gan, Qingqing School of Information Science and Technology Guangdong University of Foreign Studies Guangzhou China Guangdong Engineering Research Center of Data Security Governance and Privacy Computing Guangzhou China
Federated learning allows decentralized model training while preserving data privacy. However, Non-IID data poses significant challenges, leading to performance degradation and increased communication overhead. This p... 详细信息
来源: 评论
AccelES: Accelerating Top-K SpMV for Embedding Similarity via Low-bit Pruning  31
AccelES: Accelerating Top-K SpMV for Embedding Similarity vi...
收藏 引用
31st IEEE International Symposium on High Performance Computer Architecture, HPCA 2025
作者: Zhai, Jiaqi Shi, Xuanhua Huang, Kaiyi Ye, Chencheng Hu, Weifang He, Bingsheng Jin, Hai Huazhong University of Science and Technology National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Wuhan430074 China National University of Singapore School of Computing 119077 Singapore
In the realm of recommendation systems, achieving real-time performance in embedding similarity tasks is often hindered by the limitations of traditional Top-K sparse matrix-vector multiplication (SpMV) methods, which... 详细信息
来源: 评论
Modal-Centric Insights Into Multimodal Federated Learning for Smart Healthcare: A Survey  24th
Modal-Centric Insights Into Multimodal Federated Learning fo...
收藏 引用
24th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2024
作者: Wang, Di Liu, Wenjian Gao, Longxiang Qu, Y. Neil. Zhang, Hu Shi, Jihong The Faculty of Data Science City University of Macau Macau China Jinan China Shandong Provincial Key Laboratory of Computing Power Internet and Service Computing Shandong Fundamental Research Center for Computer Science Jinan China Medical Integration and Practice Center Shandong University Jinan China
Federated Learning (FL) has progressed, providing a distributed mechanism where data need not be consolidated, thereby enhancing the privacy and security of sensitive healthcare data. Recent advancements in multimodal... 详细信息
来源: 评论
ERROR ANALYSIS OF FRACTIONAL COLLOCATION METHODS FOR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS WITH NONCOMPACT OPERATORS
收藏 引用
Journal of Computational Mathematics 2025年 第3期43卷 690-707页
作者: Zheng Ma Chengming Huang Anatoly A.Alikhanov School of Mathematics and Statistics Huazhong University of Science and TechnologyWuhan 430074China Hubei Key Laboratory of Engineering Modeling and Scientific Computing Huazhong University of Science and TechnologyWuhan 430074China North-Caucasus Center for Mathematical Research North-Caucasus Federal UniversityStavropol 355017Russia North-Eastern Federal University Yakutsk 677000Russia
This paper is concerned with the numerical solution of Volterra integro-differential equations with noncompact *** focus is on the problems with weakly singular *** handle the initial weak singularity of the solution,... 详细信息
来源: 评论