咨询与建议

限定检索结果

文献类型

  • 189 篇 会议
  • 53 篇 期刊文献

馆藏范围

  • 242 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 137 篇 工学
    • 56 篇 生物医学工程(可授...
    • 55 篇 控制科学与工程
    • 55 篇 计算机科学与技术...
    • 39 篇 机械工程
    • 33 篇 软件工程
    • 32 篇 仪器科学与技术
    • 17 篇 生物工程
    • 15 篇 信息与通信工程
    • 14 篇 光学工程
    • 12 篇 电子科学与技术(可...
    • 9 篇 力学(可授工学、理...
    • 9 篇 材料科学与工程(可...
    • 6 篇 电气工程
    • 6 篇 航空宇航科学与技...
    • 5 篇 交通运输工程
    • 3 篇 石油与天然气工程
    • 3 篇 网络空间安全
    • 2 篇 冶金工程
  • 88 篇 理学
    • 39 篇 生物学
    • 37 篇 数学
    • 20 篇 物理学
    • 9 篇 系统科学
    • 3 篇 统计学(可授理学、...
  • 26 篇 医学
    • 25 篇 临床医学
    • 23 篇 基础医学(可授医学...
    • 22 篇 药学(可授医学、理...
  • 10 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 4 篇 工商管理
    • 4 篇 图书情报与档案管...
  • 6 篇 法学
    • 6 篇 社会学
  • 1 篇 教育学
  • 1 篇 农学

主题

  • 32 篇 robots
  • 24 篇 electroencephalo...
  • 20 篇 brain
  • 13 篇 task analysis
  • 8 篇 neural networks
  • 8 篇 mobile robots
  • 8 篇 visualization
  • 8 篇 neuroscience
  • 7 篇 manipulators
  • 7 篇 trajectory
  • 6 篇 complex networks
  • 6 篇 mathematical mod...
  • 5 篇 neurons
  • 5 篇 oscillators
  • 5 篇 brain computer i...
  • 5 篇 parameter estima...
  • 5 篇 training
  • 4 篇 motion planning
  • 4 篇 three-dimensiona...
  • 4 篇 robust control

机构

  • 88 篇 center for techn...
  • 32 篇 neuroscience and...
  • 25 篇 innopolis univer...
  • 16 篇 center for neuro...
  • 16 篇 center for techn...
  • 10 篇 neuroscience and...
  • 9 篇 center for biome...
  • 7 篇 plovdiv medical ...
  • 7 篇 innopolis univer...
  • 7 篇 neurotechnology ...
  • 5 篇 neuroscience and...
  • 5 篇 faculty of contr...
  • 5 篇 neuroscience and...
  • 4 篇 innopolis univer...
  • 4 篇 neuroscience and...
  • 4 篇 baltic center fo...
  • 4 篇 neuroscience res...
  • 4 篇 saratov state me...
  • 4 篇 innopolis univer...
  • 4 篇 kalashnikov izhe...

作者

  • 27 篇 klimchik alexand...
  • 20 篇 kurkin semen
  • 20 篇 maksimenko vladi...
  • 17 篇 grubov vadim
  • 15 篇 badarin artem
  • 14 篇 savin sergei
  • 12 篇 alexandr klimchi...
  • 11 篇 oleg i. borisov
  • 11 篇 pitsik elena
  • 11 篇 khorev vladimir
  • 10 篇 anton a. pyrkin
  • 9 篇 frolov nikita
  • 8 篇 semen kurkin
  • 8 篇 vadim grubov
  • 8 篇 vladimir maksime...
  • 8 篇 kuc alexander
  • 8 篇 andreev andrey
  • 8 篇 alexey bobtsov
  • 7 篇 kazantsev victor...
  • 7 篇 yagfarov rauf

语言

  • 239 篇 英文
  • 3 篇 俄文
检索条件"机构=Center for Technologies in Robotics and Mechatronics Components"
242 条 记 录,以下是101-110 订阅
排序:
Motion Planning for Multirotor Aerial Vehicles in Plan-based Control Paradigm: a Review
arXiv
收藏 引用
arXiv 2022年
作者: Kulathunga, Geesara Klimchik, Alexandr Center for Technologies in Robotics and Mechatronics Components Innopolis University Russia
In general, optimal motion planning can be performed both locally and globally. In such a planning, the choice in favour of either local or global planning technique mainly depends on whether the environmental conditi... 详细信息
来源: 评论
Path Planning Followed by Kinodynamic Smoothing for Multirotor Aerial Vehicles (MAVs)
Path Planning Followed by Kinodynamic Smoothing for Multirot...
收藏 引用
Nonlinearity, Information and robotics, (NIR) International Conference
作者: Geesara Kulathunga Dmitry Devitt Roman Fedorenko Sergei Savin Alexandr Klimchik Center for Technologies in Robotics and Mechatronics Components Innopolis University Russia
We explore path planning followed by kinodynamic smoothing while ensuring the vehicle dynamics feasibility for MAVs. We have chosen a geometrically based motion planning technique "RRT*" for this purpose. In... 详细信息
来源: 评论
How Long short-term memory artificial neural network, synthetic data, and fine-tuning improve the classification of raw EEG data  6
How Long short-term memory artificial neural network, synthe...
收藏 引用
6th Scientific School "Dynamics of Complex Networks and their Applications", DCNA 2022
作者: Nasybullin, Albert Maksimenko, Vladimir Kurkin, Semen Innopolis University Laboratory of Data Analysis and Bioinformatics Center for Artificial Intelligence Innopolis Russia Innopolis University Neuroscience and Cognitive Technology Laboratory Center for Technologies in Robotics and Mechatronics Components Innopolis Russia
In this paper, we discuss a Machine Learning pipeline for the classification of EEG data. We propose a combination of synthetic data generation, long short-term memory artificial neural network (LSTM), and fine-tuning... 详细信息
来源: 评论
Real-time long range trajectory replanning for MAVs in the presence of dynamics obstacles
arXiv
收藏 引用
arXiv 2020年
作者: Kulathunga, Geesara Fedorenko, Roman Kopylov, Sergey Klimchik, Alexandr Center for Technologies in Robotics and Mechatronics Components Innopolis University Russia
—Real-time long-range local planning is a challenging task, especially in the presence of dynamics obstacles. We propose a complete system which is capable of performing the local replanning in real-time. Desired tra... 详细信息
来源: 评论
Workspace Analysis of Tensegrity Structures with an Iterative Energy-based Algorithm
Workspace Analysis of Tensegrity Structures with an Iterativ...
收藏 引用
Nonlinearity, Information and robotics, (NIR) International Conference
作者: Sergei Savin Oleg Balakhnov Alexandr Klimchik Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis
The paper studies the use of energy-based forward and inverse kinematics procedures for calculation of operational space of tensegrity robotics structures. Tensegrity structures are compliant and highly dynamical, whi... 详细信息
来源: 评论
Biomarkers of brain activity for the performance evaluation in the process of solving cognitive tasks  5
Biomarkers of brain activity for the performance evaluation ...
收藏 引用
5th Scientific School on Dynamics of Complex Networks and their Applications, DCNA 2021
作者: Badarin, Artem Smirnov, Nikita Kurkin, Semen Neuroscience and Cognitive Technology Laboratory Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University Kaliningrad Russia
In this paper, we analyze the brain activity during the execution by the subject of simple cognitive tasks associated with visual attention and symbol perception. We obtain biomarkers of brain activity in the process ... 详细信息
来源: 评论
Energy-based local forward and inverse kinematics methods for tensegrity robots
Energy-based local forward and inverse kinematics methods fo...
收藏 引用
IEEE International Conference on Robotic Computing (IRC)
作者: Sergei Savin Oleg Balakhnov Alexandr Klimchik Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis
This paper describes an energy-based forward kinematics method for tensegrity robotics structures. The method can be implemented as a nonlinear optimization procedure and solved with standard optimization algorithms. ... 详细信息
来源: 评论
Effect of prehistory on the ambiguous stimuli processing in the human brain  5
Effect of prehistory on the ambiguous stimuli processing in ...
收藏 引用
5th Scientific School on Dynamics of Complex Networks and their Applications, DCNA 2021
作者: Kuc, Alexander Neuroscience and Cognitive Technology Lab Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University Kaliningrad Russia
To model the picture of the external environment, the brain uses data coming from the sensory system. However, it is believed that the brain’s representation of the external environment is formed not only by sensory ... 详细信息
来源: 评论
Trajectory tracking for quadrotors: An optimization-based planning followed by controlling approach
Research Square
收藏 引用
Research Square 2021年
作者: Kulathunga, Geesara Devitt, Dmitry Klimchik, Alexandr Center for Technologies in Robotics and Mechatronics Components Innopolis University Russia
We present an optimization-based reference trajectory tracking method for quadrotor robots for slow-speed maneuvers. The proposed method uses planning followed by the controlling paradigm. The basic concept of the pro... 详细信息
来源: 评论
Quasi-movements as an intermediate type of motion  5
Quasi-movements as an intermediate type of motion
收藏 引用
5th Scientific School on Dynamics of Complex Networks and their Applications, DCNA 2021
作者: Smirnov, Nikita M. Kurkin, Semen Neuroscience and Cognitive Technology Laboratory Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University Kaliningrad Russia
This paper discusses the three distinct types of motor activity, namely quasi, real, and imagery. Quasi-motion is voluntary movements that are minimized to the point that finally become undetectable by objective measu... 详细信息
来源: 评论