咨询与建议

限定检索结果

文献类型

  • 153 篇 会议
  • 95 篇 期刊文献

馆藏范围

  • 248 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 63 篇 医学
    • 53 篇 临床医学
    • 31 篇 基础医学(可授医学...
    • 11 篇 药学(可授医学、理...
    • 10 篇 特种医学
    • 8 篇 公共卫生与预防医...
    • 4 篇 医学技术(可授医学...
  • 49 篇 理学
    • 37 篇 生物学
    • 12 篇 数学
    • 10 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 4 篇 化学
    • 1 篇 系统科学
  • 48 篇 工学
    • 31 篇 生物医学工程(可授...
    • 25 篇 光学工程
    • 23 篇 计算机科学与技术...
    • 23 篇 软件工程
    • 15 篇 生物工程
    • 8 篇 信息与通信工程
    • 7 篇 电气工程
    • 6 篇 电子科学与技术(可...
    • 4 篇 控制科学与工程
    • 3 篇 机械工程
    • 2 篇 交通运输工程
  • 15 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 5 篇 公共管理
    • 5 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 农学
    • 3 篇 作物学
  • 3 篇 教育学
    • 3 篇 心理学(可授教育学...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 47 篇 functional magne...
  • 30 篇 brain modeling
  • 26 篇 neuroimaging
  • 20 篇 biomedical imagi...
  • 19 篇 independent comp...
  • 17 篇 magnetic resonan...
  • 16 篇 feature extracti...
  • 16 篇 correlation
  • 15 篇 deep learning
  • 15 篇 schizophrenia
  • 13 篇 engineering in m...
  • 13 篇 predictive model...
  • 13 篇 visualization
  • 13 篇 data models
  • 12 篇 electroencephalo...
  • 11 篇 biomarkers
  • 11 篇 signal processin...
  • 10 篇 couplings
  • 10 篇 biological syste...
  • 10 篇 accuracy

机构

  • 25 篇 tri-institutiona...
  • 21 篇 tri-institutiona...
  • 12 篇 georgia state un...
  • 10 篇 tri-institutiona...
  • 9 篇 department of co...
  • 9 篇 department of co...
  • 7 篇 tri-institutiona...
  • 6 篇 georgia state un...
  • 6 篇 emory university...
  • 6 篇 tri-institutiona...
  • 6 篇 school of comput...
  • 6 篇 tri-institutiona...
  • 6 篇 school of electr...
  • 5 篇 tri-institutiona...
  • 5 篇 massachusetts ge...
  • 5 篇 department of ps...
  • 5 篇 school of electr...
  • 5 篇 tri-institutiona...
  • 5 篇 tri-institutiona...
  • 5 篇 school of inform...

作者

  • 96 篇 vince d. calhoun
  • 30 篇 armin iraji
  • 26 篇 calhoun vince d.
  • 23 篇 vince d calhoun
  • 20 篇 vince calhoun
  • 19 篇 zening fu
  • 18 篇 robyn l. miller
  • 14 篇 jingyu liu
  • 13 篇 charles a. ellis
  • 11 篇 anees abrol
  • 10 篇 tülay adali
  • 8 篇 jing sui
  • 8 篇 shile qi
  • 8 篇 rongtao jiang
  • 8 篇 bishal thapaliya
  • 8 篇 mohammad s.e. se...
  • 7 篇 thompson paul m.
  • 7 篇 elaheh zendehrou...
  • 7 篇 ashkan faghiri
  • 7 篇 tulay adali

语言

  • 245 篇 英文
  • 3 篇 其他
检索条件"机构=Center for Translational Research in Neuroimaging and Data Science: Georgia State University"
248 条 记 录,以下是111-120 订阅
排序:
statelets: A Novel Multi-Dimensional state-Shape Representation Of Brain Functional Connectivity Dynamics
Statelets: A Novel Multi-Dimensional State-Shape Representat...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Md Abdur Rahaman Eswar Damaraju Debbrata Kumar Saha Vince D. Calhoun Sergey M. Plis Georgia Institute of Technology Atlanta GA USA Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology Emory University Atlanta GA USA
Time series motifs discovery and summarization is an established powerful tool for modeling and analyzing dynamical systems. In a similar spirit, we propose a state-space data mining approach called “statelets.” It ... 详细信息
来源: 评论
Improved Dictionary Learning for FMRI data Analysis Capturing Common and Individual Activation Maps
Improved Dictionary Learning for FMRI Data Analysis Capturin...
收藏 引用
Asilomar Conference on Signals, Systems & Computers
作者: Shuai Xu Rui Jin Seung-Jun Kim Tülay Adali Vince D. Calhoun Department of Computer Science and Electrical Engineering University of Maryland Baltimore County USA Tri-institutional Center for Translational Research in Neuroimaging and Data Science Georgia State University Georgia Institute of Technology and Emory University USA
A dictionary learning (DL)-based method for mul-tisubject functional magnetic resonance imaging (fMRI) data analysis is proposed. The method can incorporate group attributes to find the neural activation maps that are... 详细信息
来源: 评论
Any-Way Independent Component Analysis with Reference
Any-Way Independent Component Analysis with Reference
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Kuaikuai Duan Rogers F. Silva Jingyu Liu Oktay Agcaoglu Vince D. Calhoun Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology Emory University Atlanta Georgia USA Department of Computer Science Georgia State University Atlanta USA Department of Psychology Georgia State University Atlanta GA USA
Multimodal fusion with reference allows a prior-guided exploration of coherent multimodal patterns to facilitate the interpretation. Multiset canonical correlation analysis with reference + joint independent component...
来源: 评论
ON SELF-SUPERVISED MULTIMODAL REPRESENTATION LEARNING: AN APPLICATION TO ALZHEIMER'S DISEASE
arXiv
收藏 引用
arXiv 2020年
作者: Fedorov, Alex Wu, Lei Sylvain, Tristan Luck, Margaux DeRamus, Thomas P. Bleklov, Dmitry Plis, Sergey M. Calhoun, Vince D. Georgia Institute of Technology Georgia Georgia State University Georgia Emory University Georgia Center for Translational Research in Neuroimaging and Data Science AtlantaGA United States Mila Université de Montréal MontrealQC Canada
Introspection of deep supervised predictive models trained on functional and structural brain imaging may uncover novel markers of Alzheimer's disease (AD). However, supervised training is prone to learning from s... 详细信息
来源: 评论
Multimodal Imaging Feature Extraction with Reference Canonical Correlation Analysis Underlying Intelligence
Multimodal Imaging Feature Extraction with Reference Canonic...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Ram Sapkota Bishal Thapaliya Pranav Suresh Bhaskar Ray Vince D. Calhoun Jingyu Liu Translational Research in Neuroimaging and Data Science (TReNDS) Department of Computer Science Georgia State University Atlanta USA School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta USA
With neuroimaging data scientists have gained substantial information of the neuronal underpinning of intelligence. Yet how to integrate multimodal neuronal features effectively in relation to intelligence remains elu...
来源: 评论
Topological Correction of Subject-Level Intrinsic Connectivity Networks
Topological Correction of Subject-Level Intrinsic Connectivi...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Noah Lewis Armin Iraji Robyn Miller Vince D. Calhoun School of Computational Science and Engineering Georgia Institute of Technology Tri-Institutional Center for Translational Research in Neuroimaging Data Science (TReNDS) Georgia Institute of Technology Georgia State University Emory University School of Electrical and Computer Engineering Georgia Institute of Technology
Over the last several decades, researchers have sought to capture the underlying functional activity of the human brain from functional magnetic resonance imaging (fMRI). One well-studied and promising avenue of resea...
来源: 评论
Uncovering Effects of Schizophrenia upon a Maximally Significant, Minimally Complex Subset of Default Mode Network Connectivity Features
Uncovering Effects of Schizophrenia upon a Maximally Signifi...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Masoud Seraji Charles A. Ellis Mohammad S.E. Sendi Robyn L. Miller Vince D. Calhoun Center for Translational Research in Neuroimaging and Data Science (TReNDS Center) Georgia State University Georgia Institute of Technology Emory University Atlanta USA TReNDS Center Georgia State University Georgia Institute of Technology Emory University Atlanta USA Department of Psychiatry Harvard Medical School Boston USA
A common analysis approach for resting state functional magnetic resonance imaging (rs-fMRI) dynamic functional network connectivity (dFNC) data involves clustering windowed correlation time-series and assigning time ... 详细信息
来源: 评论
Advanced machine learning in neuroimaging studies via federated learning
Advanced machine learning in neuroimaging studies via federa...
收藏 引用
IEEE International Conference on Big data
作者: Sunitha Basodi Javier Romero Sandeep Panta Dylan Martin Sergey Plis Anand D. Sarwate Vince D. Calhoun Tri-Institutional Center for Translational Research in Neuroimaging and Data Science Georgia State University Georgia Institute of Technology Emory University Atlanta GA USA Department of Electrical & Computer Engineering Rutgers University NJ USA
Federated analysis can help perform large-scale analyses using neuroimaging datasets across various research groups overcoming the limitations of institutional data-sharing policies, privacy or regulatory concerns as ... 详细信息
来源: 评论
Analysis of High-Order Brain Networks Resolved in Time and Frequency Using CP Decomposition
Analysis of High-Order Brain Networks Resolved in Time and F...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Ashkan Faghiri Armin Iraji Tulay Adali Vince Calhoun Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology and Emory University Atlanta GA USA University of Maryland Baltimore County Baltimore MD USA
To capture different aspects of a complex system, the modeling approach should be able to take these effectively into consideration. Two aspects of the human brain we are quite interested in are its interconnected nat...
来源: 评论
On Self-Supervised Multimodal Representation Learning: An Application To Alzheimer’s Disease
On Self-Supervised Multimodal Representation Learning: An Ap...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Alex Fedorov Lei Wu Tristan Sylvain Margaux Luck Thomas P. DeRamus Dmitry Bleklov Sergey M. Plis Vince D. Calhoun Georgia Institute of Technology Center for Translational Research in Neuroimaging and Data Science Atlanta GA USA Georgia State University Mila Université de Montréal Montréal Québec Canada Emory University
Introspection of deep supervised predictive models trained on functional and structural brain imaging may uncover novel markers of Alzheimer's disease (AD). However, supervised training is prone to learning from s... 详细信息
来源: 评论