咨询与建议

限定检索结果

文献类型

  • 153 篇 会议
  • 90 篇 期刊文献

馆藏范围

  • 243 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 61 篇 医学
    • 50 篇 临床医学
    • 29 篇 基础医学(可授医学...
    • 11 篇 药学(可授医学、理...
    • 10 篇 特种医学
    • 7 篇 公共卫生与预防医...
    • 4 篇 医学技术(可授医学...
  • 47 篇 理学
    • 35 篇 生物学
    • 12 篇 数学
    • 10 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 4 篇 化学
    • 1 篇 系统科学
  • 46 篇 工学
    • 30 篇 生物医学工程(可授...
    • 25 篇 光学工程
    • 22 篇 计算机科学与技术...
    • 22 篇 软件工程
    • 15 篇 生物工程
    • 7 篇 电气工程
    • 7 篇 信息与通信工程
    • 6 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 控制科学与工程
    • 2 篇 交通运输工程
  • 14 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 5 篇 公共管理
    • 4 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 4 篇 教育学
    • 4 篇 心理学(可授教育学...
  • 4 篇 农学
    • 3 篇 作物学
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 47 篇 functional magne...
  • 30 篇 brain modeling
  • 27 篇 neuroimaging
  • 20 篇 biomedical imagi...
  • 19 篇 independent comp...
  • 18 篇 magnetic resonan...
  • 16 篇 feature extracti...
  • 16 篇 correlation
  • 15 篇 deep learning
  • 15 篇 schizophrenia
  • 13 篇 engineering in m...
  • 13 篇 predictive model...
  • 13 篇 visualization
  • 13 篇 data models
  • 12 篇 electroencephalo...
  • 11 篇 biomarkers
  • 11 篇 signal processin...
  • 10 篇 couplings
  • 10 篇 biological syste...
  • 10 篇 accuracy

机构

  • 25 篇 tri-institutiona...
  • 21 篇 tri-institutiona...
  • 12 篇 georgia state un...
  • 10 篇 tri-institutiona...
  • 9 篇 department of co...
  • 9 篇 department of co...
  • 7 篇 tri-institutiona...
  • 7 篇 tri-institutiona...
  • 6 篇 georgia state un...
  • 6 篇 tri-institutiona...
  • 6 篇 emory university...
  • 6 篇 school of comput...
  • 6 篇 tri-institutiona...
  • 6 篇 school of electr...
  • 5 篇 massachusetts ge...
  • 5 篇 department of ps...
  • 5 篇 school of electr...
  • 5 篇 tri-institutiona...
  • 5 篇 school of inform...
  • 5 篇 wallace h. coult...

作者

  • 96 篇 vince d. calhoun
  • 30 篇 armin iraji
  • 26 篇 calhoun vince d.
  • 22 篇 vince d calhoun
  • 21 篇 vince calhoun
  • 19 篇 zening fu
  • 18 篇 robyn l. miller
  • 14 篇 jingyu liu
  • 13 篇 charles a. ellis
  • 11 篇 anees abrol
  • 10 篇 tülay adali
  • 8 篇 jing sui
  • 8 篇 shile qi
  • 8 篇 rongtao jiang
  • 8 篇 bishal thapaliya
  • 8 篇 mohammad s.e. se...
  • 7 篇 elaheh zendehrou...
  • 7 篇 ashkan faghiri
  • 7 篇 tulay adali
  • 7 篇 ellis charles a.

语言

  • 240 篇 英文
  • 3 篇 其他
检索条件"机构=Center for Translational Research in Neuroimaging and Data Science: Georgia State University"
243 条 记 录,以下是121-130 订阅
排序:
REGRESSION-ASSISTED INDEPENDENT VECTOR ANALYSIS: A SOLUTION TO LARGE-SCALE FMRI data ANALYSIS
REGRESSION-ASSISTED INDEPENDENT VECTOR ANALYSIS: A SOLUTION ...
收藏 引用
Asilomar Conference on Signals, Systems & Computers
作者: H. Yang B. Gabrielson V. D. Calhoun T. Adali Dept. of CSEE University of Maryland Baltimore County Baltimore USA Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology and Emory University Atlanta USA
Multi-subject fMRI data is instrumental in understanding the brain function and studying different brain disorders. It is desirable to analyze fMRI datasets jointly to leverage the cross information that exists across...
来源: 评论
New Interpretable Patterns and Discriminative Features from Brain Functional Network Connectivity using Dictionary Learning
New Interpretable Patterns and Discriminative Features from ...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: F. Ghayem H. Yang F. Kantar S.-J. Kim V. D. Calhoun T. Adali Dept. of CSEE University of Maryland Baltimore County Baltimore USA Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology and Emory University Atlanta USA
Independent component analysis (ICA) of multi-subject functional magnetic resonance imaging (fMRI) data has proven useful in providing a fully multivariate summary that can be used for multiple purposes. ICA can ident... 详细信息
来源: 评论
A New Hypergraph Clustering Method For Exploring Transdiagnostic Biotypes In Mental Illnesses: Application To Schizophrenia And Psychotic Bipolar Disorder
A New Hypergraph Clustering Method For Exploring Transdiagno...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Yuhui Du Ju Niu Vince D Calhoun School of Computer and Information Technology Shanxi University Taiyuan China Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology Emory University Atlanta GA USA
It is difficult to distinguish schizophrenia (SZ) and bipolar disorder with psychosis (BPP) due to their overlapping symptoms. Indeed, there has been evidence supporting different subtypes within them. data-driven clu... 详细信息
来源: 评论
Constrained Independent Component Analysis Based on Entropy Bound Minimization for Subgroup Identification from Multi-subject fMRI data
Constrained Independent Component Analysis Based on Entropy ...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: H. Yang F. Ghayem B. Gabrielson M. A. B. S. Akhonda V. D. Calhoun T. Adali Dept. of CSEE University of Maryland Baltimore County Baltimore USA Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology and Emory University Atlanta USA
Identification of subgroups of subjects homogeneous functional networks is a key step for precision medicine. Independent vector analysis (IVA) is shown to be effective for this task, however, it has a substantial com... 详细信息
来源: 评论
How Does Aging Affect Whole-brain Functional Network Connectivity? Evidence from An ICA Method
How Does Aging Affect Whole-brain Functional Network Connect...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Yuhui Du Yating Guo Vince D Calhoun School of Computer and Information Technology Shanxi University Taiyuan China Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology Emory University Atlanta GA USA
Many studies have shown that changes in the functional connectivity are diverse along with aging. However, few studies have addressed how aging affects connectivity among large-scale brain networks, and it is challeng...
来源: 评论
A New Semi-Supervised Non-Negative Matrix Factorization Method For Brain Dynamic Functional Connectivity Analysis
A New Semi-Supervised Non-Negative Matrix Factorization Meth...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Yuhui Du Xingyu He Vince D Calhoun School of Computer and Information Technology Shanxi University Taiyuan China Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology Emory University Atlanta GA USA
To overcome the shortcoming of static brain functional connectivity analysis, recent studies have analyzed brain functional connectivity from a time-varying view to identify subtle group differences as potential bioma... 详细信息
来源: 评论
An Adaptive Semi-Supervised Deep Clustering and Its Application to Identifying Biotypes of Psychiatric Disorders
An Adaptive Semi-Supervised Deep Clustering and Its Applicat...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Yuhui Du Fulin Wu Ju Niu Vince D Calhoun School of Computer and Information Technology Shanxi University Taiyuan China Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology Emory University Atlanta GA USA
Symptoms overlap among different types of psychiatric disorder, which makes diagnosis challenging. There has been evidence that exploring new biotypes may help solve the problem. Using neuroimaging data, clustering te...
来源: 评论
A Deep Learning Approach for Psychosis Spectrum Label Noise Detection from Multimodal neuroimaging data
A Deep Learning Approach for Psychosis Spectrum Label Noise ...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Hooman Rokham Haleh Falakshahi Vince D. Calhoun Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology and Emory University Atlanta GA USA School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta GA USA
Understanding the structural and functional mechanisms of the brain is challenging for mood and mental disorders. Many neuroimaging techniques are widely used to reveal hidden patterns from different brain imaging mod...
来源: 评论
Evaluating Trade-Offs in IVA of Multimodal neuroimaging using Cross-Platform Multidataset Independent Subspace Analysis
Evaluating Trade-Offs in IVA of Multimodal Neuroimaging usin...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Xinhui Li Daniel Khosravinezhad Vince D. Calhoun Rogers F. Silva Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology and Emory University Atlanta GA USA Department of Electrical and Computer Engineering Georgia Institute of Technology Atlanta GA USA
Multidataset independent subspace analysis (MISA) unifies multiple linear blind source separation methods to analyze joint and unique information across multiple datasets. MISA can jointly analyze large multimodal neu...
来源: 评论
Network Differential in Gaussian Graphical Models from Multimodal neuroimaging data*
Network Differential in Gaussian Graphical Models from Multi...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Haleh Falakshahi Hooman Rokham Robyn Miller Jean Liu Vince D. Calhoun Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology and Emory University Atlanta GA USA School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta GA USA
Multimodal brain network analysis has the potential to provide insights into the mechanisms of brain disorders. Most previous studies have analyzed either unimodal brain graphs or focused on local/global graphic metri...
来源: 评论