咨询与建议

限定检索结果

文献类型

  • 153 篇 会议
  • 95 篇 期刊文献

馆藏范围

  • 248 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 63 篇 医学
    • 53 篇 临床医学
    • 31 篇 基础医学(可授医学...
    • 11 篇 药学(可授医学、理...
    • 10 篇 特种医学
    • 8 篇 公共卫生与预防医...
    • 4 篇 医学技术(可授医学...
  • 49 篇 理学
    • 37 篇 生物学
    • 12 篇 数学
    • 10 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 4 篇 化学
    • 1 篇 系统科学
  • 48 篇 工学
    • 31 篇 生物医学工程(可授...
    • 25 篇 光学工程
    • 23 篇 计算机科学与技术...
    • 23 篇 软件工程
    • 15 篇 生物工程
    • 8 篇 信息与通信工程
    • 7 篇 电气工程
    • 6 篇 电子科学与技术(可...
    • 4 篇 控制科学与工程
    • 3 篇 机械工程
    • 2 篇 交通运输工程
  • 15 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 5 篇 公共管理
    • 5 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 农学
    • 3 篇 作物学
  • 3 篇 教育学
    • 3 篇 心理学(可授教育学...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 47 篇 functional magne...
  • 30 篇 brain modeling
  • 26 篇 neuroimaging
  • 20 篇 biomedical imagi...
  • 19 篇 independent comp...
  • 17 篇 magnetic resonan...
  • 16 篇 feature extracti...
  • 16 篇 correlation
  • 15 篇 deep learning
  • 15 篇 schizophrenia
  • 13 篇 engineering in m...
  • 13 篇 predictive model...
  • 13 篇 visualization
  • 13 篇 data models
  • 12 篇 electroencephalo...
  • 11 篇 biomarkers
  • 11 篇 signal processin...
  • 10 篇 couplings
  • 10 篇 biological syste...
  • 10 篇 accuracy

机构

  • 25 篇 tri-institutiona...
  • 21 篇 tri-institutiona...
  • 12 篇 georgia state un...
  • 10 篇 tri-institutiona...
  • 9 篇 department of co...
  • 9 篇 department of co...
  • 7 篇 tri-institutiona...
  • 6 篇 georgia state un...
  • 6 篇 emory university...
  • 6 篇 tri-institutiona...
  • 6 篇 school of comput...
  • 6 篇 tri-institutiona...
  • 6 篇 school of electr...
  • 5 篇 tri-institutiona...
  • 5 篇 massachusetts ge...
  • 5 篇 department of ps...
  • 5 篇 school of electr...
  • 5 篇 tri-institutiona...
  • 5 篇 tri-institutiona...
  • 5 篇 school of inform...

作者

  • 96 篇 vince d. calhoun
  • 30 篇 armin iraji
  • 26 篇 calhoun vince d.
  • 23 篇 vince d calhoun
  • 20 篇 vince calhoun
  • 19 篇 zening fu
  • 18 篇 robyn l. miller
  • 14 篇 jingyu liu
  • 13 篇 charles a. ellis
  • 11 篇 anees abrol
  • 10 篇 tülay adali
  • 8 篇 jing sui
  • 8 篇 shile qi
  • 8 篇 rongtao jiang
  • 8 篇 bishal thapaliya
  • 8 篇 mohammad s.e. se...
  • 7 篇 thompson paul m.
  • 7 篇 elaheh zendehrou...
  • 7 篇 ashkan faghiri
  • 7 篇 tulay adali

语言

  • 245 篇 英文
  • 3 篇 其他
检索条件"机构=Center for Translational Research in Neuroimaging and Data Science: Georgia State University"
248 条 记 录,以下是51-60 订阅
排序:
Improved Dictionary Learning for FMRI data Analysis Capturing Common and Individual Activation Maps  58
Improved Dictionary Learning for FMRI Data Analysis Capturin...
收藏 引用
58th Asilomar Conference on Signals, Systems and Computers, ACSSC 2024
作者: Xu, Shuai Jin, Rui Kim, Seung-Jun Adali, Tülay Calhoun, Vince D. University of Maryland Baltimore County Department of Computer Science and Electrical Engineering United States Tri-institutional Center for Translational Research in Neuroimaging and Data Science Georgia State University Georgia Institute of Technology United States Emory University United States
A dictionary learning (DL)-based method for mul-tisubject functional magnetic resonance imaging (fMRI) data analysis is proposed. The method can incorporate group attributes to find the neural activation maps that are... 详细信息
来源: 评论
Advanced machine learning in neuroimaging studies via federated learning
Advanced machine learning in neuroimaging studies via federa...
收藏 引用
2024 IEEE International Conference on Big data, Bigdata 2024
作者: Basodi, Sunitha Romero, Javier Panta, Sandeep Martin, Dylan Plis, Sergey Sarwate, Anand D. Calhoun, Vince D. Georgia State University Georgia Institute of Technology Emory University Tri-Institutional Center for Translational Research in Neuroimaging and Data Science AtlantaGA United States Rutgers University Department of Electrical & Computer Engineering NJ United States
Federated analysis can help perform large-scale analyses using neuroimaging datasets across various research groups overcoming the limitations of institutional data-sharing policies, privacy or regulatory concerns as ... 详细信息
来源: 评论
Beyond Artifacts: Rethinking Motion-Related Signals in Resting-state fMRI Analysis
Beyond Artifacts: Rethinking Motion-Related Signals in Resti...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Samujjwal Kumar Spencer Kinsey Kyle M. Jensen Prerana Bajracharya Vince D. Calhoun Armin Iraji Tri-Institutional Center for Translational Research in Neuroimaging and Data Science Georgia State University
Resting-state functional magnetic resonance imaging (rsfMRI) plays a pivotal role in estimating intrinsic brain functional connectivity within healthy and clinical populations. However, the pervasive impact of head mo... 详细信息
来源: 评论
Graph-based deep learning models in the prediction of early-stage Alzheimers  46
Graph-based deep learning models in the prediction of early-...
收藏 引用
46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
作者: Thapaliya, Bishal Wu, Zundong Sapkota, Ram Ray, Bhaskar Suresh, Pranav Ghimire, Santosh Calhoun, Vince Liu, Jingyu Georgia State University Department of Computer Science Atlanta United States Tri-Institutional Center for Translational Research in Neuroimaging and Data Science United States Georgia Institute of Technology School of Electrical and Computer Engineering Atlanta United States Tribhuvan University Department of Applied Sciences and Chemical Engineering Nepal
Alzheimer's disease is the most common age-related problem and progresses in different stages, from cognitively normal to early mild cognitive impairment, and severe dementia. This study investigates the predictiv... 详细信息
来源: 评论
Evaluating Augmentation Approaches for Deep Learning-based Major Depressive Disorder Diagnosis with Raw Electroencephalogram data*
Evaluating Augmentation Approaches for Deep Learning-based M...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Charles A. Ellis Robyn L. Miller Vince D. Calhoun Center for Translational Research in Neuroimaging and Data Science Georgia State University Emory University Georgia Institute of Technology Atlanta USA
While deep learning methods are increasingly applied in research contexts for neuropsychiatric disorder diagnosis, small dataset size limits their potential for clinical translation. data augmentation (DA) could addre... 详细信息
来源: 评论
Cross-Sampling Rate Transfer Learning for Enhanced Raw EEG Deep Learning Classifier Performance in Major Depressive Disorder Diagnosis
Cross-Sampling Rate Transfer Learning for Enhanced Raw EEG D...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Charles A. Ellis Robyn L. Miller Vince D. Calhoun Tri-Institutional Center for Translational Research in Neuroimaging Data Science at Georgia State University Emory University and Georgia Institute of Technology
Transfer learning offers a route for developing robust deep learning models on small raw electroencephalography (EEG) datasets. Nevertheless, the utility of transferring representations from large datasets with lower ... 详细信息
来源: 评论
Functionally-Adaptive Gray and White Matter Structural Basis Sets via Dynamic Fusion of Multimodal MRI data
Functionally-Adaptive Gray and White Matter Structural Basis...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Marlena Duda Vince D. Calhoun Center for Translational Research in Neuroimaging and Data Science Georgia State University Georgia Tech and Emory University Atlanta GA USA
The exact nature of the coupling of brain structure and function has long been an open area of research. Often, this question is approached by first defining a single structural basis set, and then estimating function... 详细信息
来源: 评论
Identifying Neuropsychiatric Disorder Subtypes and Subtype-Dependent Variation in Diagnostic Deep Learning Classifier Performance
Identifying Neuropsychiatric Disorder Subtypes and Subtype-D...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Charles A. Ellis Robyn L. Miller Vince D. Calhoun Tri-Institutional Center for Translational Research in Neuroimaging and Data Science Georgia State University Emory University and the Georgia Institute of Technology
Clinicians and developers of deep learning-based neuroimaging clinical decision support systems (CDSS) need to know whether those systems will perform well for specific individuals. However, relatively few methods pro...
来源: 评论
Confirmatory Factor Analysis on Mental Health Status using ABCD Cohort
Confirmatory Factor Analysis on Mental Health Status using A...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Britny Farahdel Bishal Thapaliya Pranav Suresh Bhaskar Ray Vince D. Calhoun Jingyu Liu Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Atlanta USA
The general psychopathology factor (p factor), derived from a wide range of psychological symptoms, is proposed to approximate an individual’s tendency to develop a broad range of psychiatric disorders. The aim of th... 详细信息
来源: 评论
Learnt dynamics generalizes across tasks, datasets, and populations
arXiv
收藏 引用
arXiv 2019年
作者: Mahmood, U. Rahman, M.M. Fedorov, A. Fu, Z. Calhoun, V.D. Plis, S.M. Georgia State University Tri-institutional Center for Translational Research in Neuroimaging and Data Science AtlantaGA United States Georgia Institute of Technology Tri-institutional Center for Translational Research in Neuroimaging and Data Science AtlantaGA United States Emory University Tri-institutional Center for Translational Research in Neuroimaging and Data Science AtlantaGA United States
Differentiating multivariate dynamic signals is a difficult learning problem as the feature space may be large yet often only a few training examples are available. Traditional approaches to this problem either procee... 详细信息
来源: 评论