咨询与建议

限定检索结果

文献类型

  • 153 篇 会议
  • 95 篇 期刊文献

馆藏范围

  • 248 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 63 篇 医学
    • 53 篇 临床医学
    • 31 篇 基础医学(可授医学...
    • 11 篇 药学(可授医学、理...
    • 10 篇 特种医学
    • 8 篇 公共卫生与预防医...
    • 4 篇 医学技术(可授医学...
  • 49 篇 理学
    • 37 篇 生物学
    • 12 篇 数学
    • 10 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 4 篇 化学
    • 1 篇 系统科学
  • 48 篇 工学
    • 31 篇 生物医学工程(可授...
    • 25 篇 光学工程
    • 23 篇 计算机科学与技术...
    • 23 篇 软件工程
    • 15 篇 生物工程
    • 8 篇 信息与通信工程
    • 7 篇 电气工程
    • 6 篇 电子科学与技术(可...
    • 4 篇 控制科学与工程
    • 3 篇 机械工程
    • 2 篇 交通运输工程
  • 15 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 5 篇 公共管理
    • 5 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 农学
    • 3 篇 作物学
  • 3 篇 教育学
    • 3 篇 心理学(可授教育学...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 47 篇 functional magne...
  • 30 篇 brain modeling
  • 26 篇 neuroimaging
  • 20 篇 biomedical imagi...
  • 19 篇 independent comp...
  • 17 篇 magnetic resonan...
  • 16 篇 feature extracti...
  • 16 篇 correlation
  • 15 篇 deep learning
  • 15 篇 schizophrenia
  • 13 篇 engineering in m...
  • 13 篇 predictive model...
  • 13 篇 visualization
  • 13 篇 data models
  • 12 篇 electroencephalo...
  • 11 篇 biomarkers
  • 11 篇 signal processin...
  • 10 篇 couplings
  • 10 篇 biological syste...
  • 10 篇 accuracy

机构

  • 25 篇 tri-institutiona...
  • 21 篇 tri-institutiona...
  • 12 篇 georgia state un...
  • 10 篇 tri-institutiona...
  • 9 篇 department of co...
  • 9 篇 department of co...
  • 7 篇 tri-institutiona...
  • 6 篇 georgia state un...
  • 6 篇 emory university...
  • 6 篇 tri-institutiona...
  • 6 篇 school of comput...
  • 6 篇 tri-institutiona...
  • 6 篇 school of electr...
  • 5 篇 tri-institutiona...
  • 5 篇 massachusetts ge...
  • 5 篇 department of ps...
  • 5 篇 school of electr...
  • 5 篇 tri-institutiona...
  • 5 篇 tri-institutiona...
  • 5 篇 school of inform...

作者

  • 96 篇 vince d. calhoun
  • 30 篇 armin iraji
  • 26 篇 calhoun vince d.
  • 23 篇 vince d calhoun
  • 20 篇 vince calhoun
  • 19 篇 zening fu
  • 18 篇 robyn l. miller
  • 14 篇 jingyu liu
  • 13 篇 charles a. ellis
  • 11 篇 anees abrol
  • 10 篇 tülay adali
  • 8 篇 jing sui
  • 8 篇 shile qi
  • 8 篇 rongtao jiang
  • 8 篇 bishal thapaliya
  • 8 篇 mohammad s.e. se...
  • 7 篇 thompson paul m.
  • 7 篇 elaheh zendehrou...
  • 7 篇 ashkan faghiri
  • 7 篇 tulay adali

语言

  • 245 篇 英文
  • 3 篇 其他
检索条件"机构=Center for Translational Research in Neuroimaging and Data Science: Georgia State University"
248 条 记 录,以下是61-70 订阅
排序:
A Multimodal Deep Learning Approach for Automated Detection and Characterization of Distinctly Salient Features of Alzheimers Disease
A Multimodal Deep Learning Approach for Automated Detection ...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Ishaan Batta Anees Abrol Vince Calhoun Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology Emory University Atlanta USA
Neurological disorders generally involve multiple kinds of changes in the functional and structural properties of the brain. In this study, we develop a CNN-based multimodal deep learning pipeline by exploiting both f...
来源: 评论
A Novel Deep Subspace Learning Framework to Automatically Uncover Assessment-Specific Independent Brain Networks
A Novel Deep Subspace Learning Framework to Automatically Un...
收藏 引用
Annual Conference on Information sciences and Systems (CISS)
作者: Ishaan Batta Anees Abrol Vince Calhoun Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology and Emory University Atlanta USA
We present a novel deep learning framework to automatically compute independently salient networks in the brain that characterize the underlying changes in the brain in association with clinically observed assessments...
来源: 评论
Spatial Sequence Attention Network for Schizophrenia Classification from Structural Brain MR Images
Spatial Sequence Attention Network for Schizophrenia Classif...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Nagur Shareef Shaik Teja Krishna Cherukuri Vince Calhoun Dong Hye Ye Department of Computer Science Georgia State University Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State Georgia Tech Emory
Schizophrenia is a debilitating, chronic mental disorder that significantly impacts an individual’s cognitive abilities, behavior, and social interactions. It is characterized by subtle morphological changes in the b... 详细信息
来源: 评论
Dynamic Fusion of Multimodal MRI data Captures Flexible, Time-Sensitive Structure-Function Linkages in the Brain
Dynamic Fusion of Multimodal MRI Data Captures Flexible, Tim...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Marlena Duda Oktay Agcaoglu Vince D. Calhoun Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Tech and Emory University Atlanta GA USA
A major branch of neuroimaging involves capturing and understanding the relationship between brain structure and function, which is known to vary across several timescales. To this end, most recent work has approached... 详细信息
来源: 评论
Constrained Source-based Salience: Network-based Visualization of Deep Learning neuroimaging Models
Constrained Source-based Salience: Network-based Visualizati...
收藏 引用
IEEE EMBS International Conference on Information Technology Applications in Biomedicine (ITAB)
作者: Ishaan Batta Anees Abrol Vince D. Calhoun Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University Georgia Institute of Technology and Emory University Atlanta USA
Developing frameworks using high-dimensional magnetic resonance imaging (MRI) data to characterize underlying brain changes in neurological disorders is crucial and challenging. While deep learning models offer a bett... 详细信息
来源: 评论
Multimodal Fusion of Functional and Structural data to Recognize Longitudinal Change Patterns in the Adolescent Brain
Multimodal Fusion of Functional and Structural Data to Recog...
收藏 引用
IEEE EMBS International Conference on Information Technology Applications in Biomedicine (ITAB)
作者: Rekha Saha Debbrata K. Saha Zening Fu Rogers F. Silva Vince D. Calhoun Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology and Emory University Atlanta USA
Functional and structural magnetic resonance imaging (fMRI/sMRI) are extensively used modalities for studying brain development. While individual modalities may overlook crucial aspects of brain analysis, combining mu...
来源: 评论
data augmentation for schizophrenia diagnosis via vision transformer-based latent diffusion model  4
Data augmentation for schizophrenia diagnosis via vision tra...
收藏 引用
4th International Conference on Biomedicine and Bioinformatics Engineering, ICBBE 2024
作者: Yang, Yuxuan Ma, Shidong Cao, Shengjie Jia, Sihan Bi, Yuda Calhoun, Vince D. Shandong University of Science and Technology Shandong Qingdao China Tri-institutional Center for Translational Research in Neuroimaging and Data Science GSU GATech Emory AtlantaGA30303 United States
Schizophrenia (SZ) is a complex and heterogeneous disorder. Characterizing functional magnetic resonance imaging (fMRI) imaging patterns specific to SZ is challenging and can benefit greatly from advanced artificial i... 详细信息
来源: 评论
Multimodal Analysis Uncovers Links between Grey Matter Volume and both Low-and High-frequency Dynamic Connectivity states in Schizophrenia
Multimodal Analysis Uncovers Links between Grey Matter Volum...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Marlena Duda Ashkan Faghiri Vince D. Calhoun Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Atlanta GA USA
Multimodal neuroimaging fusion studies of complex disorders like schizophrenia (SZ) have revealed disease-specific links between brain structure and function that unimodal analyses alone could not produce. Here, we ut... 详细信息
来源: 评论
Improving Age Prediction: Utilizing LSTM-Based Dynamic Forecasting For data Augmentation in Multivariate Time Series Analysis
Improving Age Prediction: Utilizing LSTM-Based Dynamic Forec...
收藏 引用
IEEE Southwest Symposium on Image Analysis and Interpretation
作者: Yutong Gao Charles A. Ellis Vince D. Calhoun Robyn L. Miller Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University Georgia Institute of Technology Emory University Atlanta Georgia
The high dimensionality and complexity of neuroimaging data necessitate large datasets to develop robust and high- performing deep learning models. However, the neuroimaging field is notably hampered by the scarcity o...
来源: 评论
Improving Multichannel Raw Electroencephalography-based Diagnosis of Major Depressive Disorder via Transfer Learning with Single Channel Sleep Stage data*
Improving Multichannel Raw Electroencephalography-based Diag...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Charles A. Ellis Abhinav Sattiraju Robyn L. Miller Vince D. Calhoun Tri-Institutional Center for Translational Research in Neuroimaging and Data Science Georgia State University Georgia Institute of Technology Emory University Atlanta USA
As the field of deep learning has grown in recent years, its application to the domain of raw resting-state electroencephalography (EEG) has also increased. Relative to traditional machine learning methods or deep lea...
来源: 评论