咨询与建议

限定检索结果

文献类型

  • 510 篇 期刊文献
  • 166 篇 会议

馆藏范围

  • 676 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 278 篇 医学
    • 228 篇 临床医学
    • 108 篇 基础医学(可授医学...
    • 43 篇 公共卫生与预防医...
    • 31 篇 药学(可授医学、理...
    • 15 篇 特种医学
    • 6 篇 中西医结合
    • 6 篇 医学技术(可授医学...
  • 194 篇 理学
    • 121 篇 生物学
    • 27 篇 数学
    • 21 篇 物理学
    • 18 篇 化学
    • 15 篇 统计学(可授理学、...
    • 5 篇 天文学
  • 177 篇 工学
    • 71 篇 生物医学工程(可授...
    • 63 篇 计算机科学与技术...
    • 62 篇 软件工程
    • 45 篇 光学工程
    • 41 篇 生物工程
    • 12 篇 信息与通信工程
    • 11 篇 电气工程
    • 10 篇 电子科学与技术(可...
    • 10 篇 化学工程与技术
    • 8 篇 材料科学与工程(可...
    • 8 篇 控制科学与工程
    • 6 篇 仪器科学与技术
    • 5 篇 建筑学
  • 31 篇 农学
  • 30 篇 管理学
    • 13 篇 公共管理
    • 10 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 17 篇 教育学
    • 14 篇 心理学(可授教育学...
  • 3 篇 法学
  • 3 篇 文学

主题

  • 48 篇 functional magne...
  • 33 篇 neuroimaging
  • 30 篇 brain modeling
  • 22 篇 magnetic resonan...
  • 20 篇 biomedical imagi...
  • 19 篇 deep learning
  • 19 篇 independent comp...
  • 17 篇 correlation
  • 16 篇 feature extracti...
  • 15 篇 schizophrenia
  • 14 篇 engineering in m...
  • 13 篇 predictive model...
  • 13 篇 visualization
  • 13 篇 data models
  • 12 篇 biomarkers
  • 12 篇 electroencephalo...
  • 11 篇 depression
  • 11 篇 signal processin...
  • 11 篇 machine learning
  • 11 篇 biological syste...

机构

  • 21 篇 tri-institutiona...
  • 19 篇 tri-institutiona...
  • 11 篇 department of me...
  • 10 篇 department of in...
  • 10 篇 georgia state un...
  • 9 篇 tri-institutiona...
  • 8 篇 department of tw...
  • 8 篇 university of gl...
  • 8 篇 department of co...
  • 7 篇 national institu...
  • 7 篇 stanley center f...
  • 7 篇 university of pi...
  • 7 篇 institute for ca...
  • 7 篇 imim barcelona
  • 7 篇 wellcome centre ...
  • 7 篇 center for genom...
  • 7 篇 emory university...
  • 7 篇 tri-institutiona...
  • 7 篇 tri-institutiona...
  • 7 篇 harvard medical ...

作者

  • 89 篇 vince d. calhoun
  • 31 篇 armin iraji
  • 22 篇 vince calhoun
  • 21 篇 vince d calhoun
  • 20 篇 calhoun vince d.
  • 17 篇 zening fu
  • 16 篇 robyn l. miller
  • 13 篇 jingyu liu
  • 12 篇 anees abrol
  • 10 篇 tülay adali
  • 10 篇 charles a. ellis
  • 9 篇 kari stefansson
  • 9 篇 jing sui
  • 8 篇 bakas spyridon
  • 8 篇 caroline hayward
  • 8 篇 shile qi
  • 8 篇 rongtao jiang
  • 7 篇 timothy m frayli...
  • 7 篇 mark i mccarthy
  • 7 篇 henrik zetterber...

语言

  • 657 篇 英文
  • 13 篇 其他
  • 6 篇 中文
检索条件"机构=Center for Translational Research in Neuroimaging and Data Science"
676 条 记 录,以下是11-20 订阅
排序:
SELF-CLUSTERING GRAPH TRANSFORMER APPROACH TO MODEL RESTING STATE FUNCTIONAL BRAIN ACTIVITY
arXiv
收藏 引用
arXiv 2025年
作者: Thapaliya, Bishal Akbas, Esra Sapkota, Ram Ray, Bhaskar Calhoun, Vince Liu, Jingyu Department of Computer Science Georgia State University Atlanta United States Tri-Institutional Center for Translational Research in Neuroimaging and Data Science United States School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta United States
Resting-state functional magnetic resonance imaging (rs-fMRI) offers valuable insights into the human brain’s functional organization and is a powerful tool for investigating the relationship between brain function a... 详细信息
来源: 评论
The Dynamics of Triple Interactions in Resting FMRI: Insights Into Psychotic Disorders
The Dynamics of Triple Interactions in Resting FMRI: Insight...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Qiang Li Vince D. Calhoun Shiva Mirzaeian Armin Iraji Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State Georgia Tech and Emory University Atlanta GA United States Department of Computer Science Georgia State University Atlanta GA United States
The human brain dynamically integrated and configured information to adapt to the environment. To capture these changes over time, dynamic second-order functional connectivity was typically used to capture transient b... 详细信息
来源: 评论
Longitudinal Patterns of Functional Network Changes Over Four-Year Period Associated with Sex in the Developing Brain
Longitudinal Patterns of Functional Network Changes Over Fou...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Rekha Saha Debbrata K. Saha Zening Fu Tulay Adali Vince D. Calhoun Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology and Emory University Atlanta GA Department of Computer Science and Electrical Engineering University of Maryland Baltimore County Maryland USA
Functional network connectivity (FNC) is a valuable measure for assessing the temporal interdependence and intrinsic functional relationships among brain networks. While longitudinal research on intrinsic functional c... 详细信息
来源: 评论
Multiset FMRI data Analysis with Subject Group Information using Structured Dictionary Learning
Multiset FMRI Data Analysis with Subject Group Information u...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Shuai Xu Rui Jin Seung-Jun Kim Vince D. Calhoun Tülay Adali Department of Computer Science and Electrical Engineering University of Maryland Baltimore County Baltimore MD USA Tri-institutional Center for Translational Research in Neuroimaging and Data Science Georgia State University Georgia Institute of Technology and Emory University GA USA
A dictionary learning (DL)-based method for analyzing multiple functional magnetic resonance imaging (fMRI) data sets is developed. The algorithm can incorporate subject group information to extract neural activation ... 详细信息
来源: 评论
A New Noisy Label Learning Method for Accurate Brain Age Prediction
A New Noisy Label Learning Method for Accurate Brain Age Pre...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Yuhui Du Ruotong Li Zheng Wang Vince D Calhoun School of Computer and Information Technology Shanxi University Taiyuan China Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology Emory University Atlanta GA USA
Brain age prediction using neuroimaging data is crucial for understanding the mechanisms of brain aging. However, many previous methods for predicting brain age have relied on chronological age as the guiding label fo... 详细信息
来源: 评论
Low-Rank Tucker Decomposition of Multi-Subject Complex-Valued fMRI data
Low-Rank Tucker Decomposition of Multi-Subject Complex-Value...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Bin-Hua Zhao Qiu-Hua Lin Yue Han Jia-Yang Song Yan-Wei Niu Vince D. Calhoun School of Information and Communication Engineering Dalian University of Technology Dalian China Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology Emory University Atlanta GA USA
Tucker decomposition has shown advantages in simultaneously extracting group shared and individual features for studying brain function from multi-subject fMRI data. However, Tucker decomposition of complex-valued fMR... 详细信息
来源: 评论
Grassmannian Kernels for Efficient and Effective Detection of Group Differences in fMRI data
Grassmannian Kernels for Efficient and Effective Detection o...
收藏 引用
Annual Conference on Information sciences and Systems (CISS)
作者: Ashfia Binte Habib Ben Gabrielson Hanlu Yang Vince D. Calhoun Tülay Adali Dept. of CSEE University of Maryland Baltimore County Baltimore MD Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology Emory University Atlanta GA USA
Understanding group differences in multi-subject fMRI data is essential for advancing clinical and research applications. Factorizations such as independent component analysis (ICA) and independent vector analysis (IV... 详细信息
来源: 评论
Fusion of Multitask fMRI data with Constrained Independent Vector Analysis
Fusion of Multitask fMRI Data with Constrained Independent V...
收藏 引用
Annual Conference on Information sciences and Systems (CISS)
作者: Emin Erdem Kumbasar Hanlu Yang Trung Vu Vince D. Calhoun Tülay Adalı Dept. of CSEE University of Maryland Baltimore County Baltimore MD Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology Emory University Atlanta GA USA
Functional magnetic resonance imaging (fMRI) is a widely used neuroimaging tool for investigating brain function. In multitask fMRI analysis, data fusion methods enable the integration of information across tasks to p... 详细信息
来源: 评论
GUIDELINES FOR THE CHOICE OF THE BASELINE IN XAI ATTRIBUTION METHODS
arXiv
收藏 引用
arXiv 2025年
作者: Morasso, Cristian Dolci, Giorgio Galazzo, Ilaria Boscolo Plis, Sergey M. Menegaz, Gloria Department of Engineering for Innovation Medicine University of Verona Verona Italy Department of Computer Science University of Verona Verona Italy Tri-Institutional Center for Translational Research in Neuroimaging and Data Science Georgia State University Georgia Institute of Technology Emory University United States
Given the broad adoption of artificial intelligence, it is essential to provide evidence that AI models are reliable, trustable, and fair. To this end, the emerging field of eXplainable AI develops techniques to probe...
来源: 评论
Ultra-High Order Independent Component Analysis for Intrinsic Connectivity Networks in Resting-State Functional Magnetic Resonance Imaging data
Ultra-High Order Independent Component Analysis for Intrinsi...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Shiva Mirzaeian Kyle M. Jensen Adithya Ram Ballem Vince D. Calhoun Armin Iraji Tri-institutional Center for Translational Research in Neuroimaging and Data Science(TReNDS) Atlanta GA Department of Mathematics and Statistics Georgia State University Atlanta GA Department of Computer Science Georgia State University Atlanta GA Department of Psychology Georgia State University Atlanta GA
Spatial group independent component analysis (sgr-ICA) has become a crucial method to understand brain function in functional magnetic resonance imaging (fMRI) research, especially in resting-state fMRI (rs-fMRI) stud... 详细信息
来源: 评论