咨询与建议

限定检索结果

文献类型

  • 489 篇 期刊文献
  • 166 篇 会议

馆藏范围

  • 655 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 265 篇 医学
    • 216 篇 临床医学
    • 98 篇 基础医学(可授医学...
    • 42 篇 公共卫生与预防医...
    • 29 篇 药学(可授医学、理...
    • 15 篇 特种医学
    • 6 篇 中西医结合
    • 6 篇 医学技术(可授医学...
  • 181 篇 理学
    • 108 篇 生物学
    • 27 篇 数学
    • 21 篇 物理学
    • 15 篇 统计学(可授理学、...
    • 12 篇 化学
  • 169 篇 工学
    • 68 篇 生物医学工程(可授...
    • 63 篇 计算机科学与技术...
    • 62 篇 软件工程
    • 45 篇 光学工程
    • 39 篇 生物工程
    • 12 篇 信息与通信工程
    • 11 篇 电气工程
    • 10 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 8 篇 控制科学与工程
    • 6 篇 仪器科学与技术
    • 5 篇 建筑学
    • 5 篇 土木工程
  • 30 篇 管理学
    • 13 篇 公共管理
    • 10 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 26 篇 农学
    • 5 篇 作物学
  • 17 篇 教育学
    • 14 篇 心理学(可授教育学...
  • 3 篇 法学
  • 3 篇 文学

主题

  • 48 篇 functional magne...
  • 32 篇 neuroimaging
  • 30 篇 brain modeling
  • 21 篇 magnetic resonan...
  • 20 篇 biomedical imagi...
  • 19 篇 deep learning
  • 19 篇 independent comp...
  • 17 篇 correlation
  • 16 篇 feature extracti...
  • 15 篇 schizophrenia
  • 14 篇 engineering in m...
  • 13 篇 predictive model...
  • 13 篇 visualization
  • 13 篇 data models
  • 12 篇 biomarkers
  • 12 篇 electroencephalo...
  • 11 篇 depression
  • 11 篇 signal processin...
  • 11 篇 biological syste...
  • 11 篇 accuracy

机构

  • 22 篇 tri-institutiona...
  • 19 篇 tri-institutiona...
  • 11 篇 department of me...
  • 10 篇 department of in...
  • 10 篇 georgia state un...
  • 9 篇 tri-institutiona...
  • 8 篇 department of tw...
  • 8 篇 university of gl...
  • 8 篇 department of co...
  • 7 篇 national institu...
  • 7 篇 stanley center f...
  • 7 篇 university of pi...
  • 7 篇 institute for ca...
  • 7 篇 imim barcelona
  • 7 篇 wellcome centre ...
  • 7 篇 center for genom...
  • 7 篇 emory university...
  • 7 篇 tri-institutiona...
  • 7 篇 tri-institutiona...
  • 7 篇 harvard medical ...

作者

  • 89 篇 vince d. calhoun
  • 31 篇 armin iraji
  • 22 篇 vince d calhoun
  • 22 篇 calhoun vince d.
  • 21 篇 vince calhoun
  • 17 篇 zening fu
  • 16 篇 robyn l. miller
  • 14 篇 jingyu liu
  • 12 篇 anees abrol
  • 10 篇 tülay adali
  • 10 篇 charles a. ellis
  • 9 篇 kari stefansson
  • 9 篇 jing sui
  • 8 篇 bakas spyridon
  • 8 篇 caroline hayward
  • 8 篇 shile qi
  • 8 篇 rongtao jiang
  • 7 篇 timothy m frayli...
  • 7 篇 mark i mccarthy
  • 7 篇 henrik zetterber...

语言

  • 637 篇 英文
  • 12 篇 其他
  • 6 篇 中文
检索条件"机构=Center for Translational Research in Neuroimaging and Data Science"
655 条 记 录,以下是11-20 订阅
排序:
Beyond Artifacts: Rethinking Motion-Related Signals in Resting-State fMRI Analysis
Beyond Artifacts: Rethinking Motion-Related Signals in Resti...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Samujjwal Kumar Spencer Kinsey Kyle M. Jensen Prerana Bajracharya Vince D. Calhoun Armin Iraji Tri-Institutional Center for Translational Research in Neuroimaging and Data Science Georgia State University
Resting-state functional magnetic resonance imaging (rsfMRI) plays a pivotal role in estimating intrinsic brain functional connectivity within healthy and clinical populations. However, the pervasive impact of head mo... 详细信息
来源: 评论
Improved Dictionary Learning for FMRI data Analysis Capturing Common and Individual Activation Maps  58
Improved Dictionary Learning for FMRI Data Analysis Capturin...
收藏 引用
58th Asilomar Conference on Signals, Systems and Computers, ACSSC 2024
作者: Xu, Shuai Jin, Rui Kim, Seung-Jun Adali, Tülay Calhoun, Vince D. University of Maryland Baltimore County Department of Computer Science and Electrical Engineering United States Tri-institutional Center for Translational Research in Neuroimaging and Data Science Georgia State University Georgia Institute of Technology United States Emory University United States
A dictionary learning (DL)-based method for mul-tisubject functional magnetic resonance imaging (fMRI) data analysis is proposed. The method can incorporate group attributes to find the neural activation maps that are... 详细信息
来源: 评论
A Deep Biclustering Framework for Brain Network Analysis
A Deep Biclustering Framework for Brain Network Analysis
收藏 引用
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
作者: Md Abdur Rahaman Zening Fu Armin Iraji Vince Calhoun Center for Translational Research in Neuroimaging and Data Science (TRenDS) School of Computational Science and Engineering Georgia Institute of Technology
Brain functional connectivity (FC) analysis has emerged as a compelling quest to understand human brain dynamics and clarify disorder-related aberrations. Typically, FC can be portrayed as a graph of brain components ... 详细信息
来源: 评论
SpaDE: Semantic Locality Preserving Biclustering for neuroimaging data
SpaDE: Semantic Locality Preserving Biclustering for Neuroim...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Md Abdur Rahaman Zening Fu Armin Iraji Vince Calhoun Center for Translational Research in Neuroimaging and Data Science (TReNDS) School of Computational Science and Engineering Georgia Institute of Technology
The most discriminative and revealing patterns in the neuroimaging population are often confined to smaller subdivisions of the samples and features. Especially in neuropsychiatric conditions, symptoms are expressed w... 详细信息
来源: 评论
Advanced machine learning in neuroimaging studies via federated learning
Advanced machine learning in neuroimaging studies via federa...
收藏 引用
2024 IEEE International Conference on Big data, Bigdata 2024
作者: Basodi, Sunitha Romero, Javier Panta, Sandeep Martin, Dylan Plis, Sergey Sarwate, Anand D. Calhoun, Vince D. Georgia State University Georgia Institute of Technology Emory University Tri-Institutional Center for Translational Research in Neuroimaging and Data Science AtlantaGA United States Rutgers University Department of Electrical & Computer Engineering NJ United States
Federated analysis can help perform large-scale analyses using neuroimaging datasets across various research groups overcoming the limitations of institutional data-sharing policies, privacy or regulatory concerns as ... 详细信息
来源: 评论
Neural Complexity Unveiled: Doubly Functionally Independent Primitives (dFIPs) in Psychiatric Risk Score Assessment
Neural Complexity Unveiled: Doubly Functionally Independent ...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Najme Soleimani Vince D. Calhoun Department of Computer Science Center for Translational Research in Neuroimaging and Data Science(TReNDS) GSU GATech Emory Atlanta USA
Understanding and predicting intricate neural underpinnings of psychiatric disorders has become an area of intensive research in neuroimaging. Current assessment methods, such as genetic testing, face limitations in p... 详细信息
来源: 评论
Deep multimodal predictome for studying mental disorders (vol 44, pg 509, 2023)
收藏 引用
HUMAN BRAIN MAPPING 2023年 第14期44卷 4967-4967页
作者: Rahaman, M. A. Chen, J. Fu, Z. Lewis, N. Iraji, A. van Erp, T. G. M. Calhoun, V. D. Department of Computational Science and Engineering Georgia Institute of Technology Atlanta Georgia USA Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University Georgia Institute of Technology Emory University Atlanta Georgia USA Clinical Translational Neuroscience Laboratory Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA Center for the Neurobiology of Learning and Memory University of California Irvine Irvine California USA
Characterizing neuropsychiatric disorders is challenging due to heterogeneity in the population. We propose combining structural and functional neuroimaging and genomic data in a multimodal classification framework to... 详细信息
来源: 评论
Evaluating Augmentation Approaches for Deep Learning-based Major Depressive Disorder Diagnosis with Raw Electroencephalogram data*
Evaluating Augmentation Approaches for Deep Learning-based M...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Charles A. Ellis Robyn L. Miller Vince D. Calhoun Center for Translational Research in Neuroimaging and Data Science Georgia State University Emory University Georgia Institute of Technology Atlanta USA
While deep learning methods are increasingly applied in research contexts for neuropsychiatric disorder diagnosis, small dataset size limits their potential for clinical translation. data augmentation (DA) could addre... 详细信息
来源: 评论
Cross-Sampling Rate Transfer Learning for Enhanced Raw EEG Deep Learning Classifier Performance in Major Depressive Disorder Diagnosis
Cross-Sampling Rate Transfer Learning for Enhanced Raw EEG D...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Charles A. Ellis Robyn L. Miller Vince D. Calhoun Tri-Institutional Center for Translational Research in Neuroimaging Data Science at Georgia State University Emory University and Georgia Institute of Technology
Transfer learning offers a route for developing robust deep learning models on small raw electroencephalography (EEG) datasets. Nevertheless, the utility of transferring representations from large datasets with lower ... 详细信息
来源: 评论
Graph-based deep learning models in the prediction of early-stage Alzheimers  46
Graph-based deep learning models in the prediction of early-...
收藏 引用
46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
作者: Thapaliya, Bishal Wu, Zundong Sapkota, Ram Ray, Bhaskar Suresh, Pranav Ghimire, Santosh Calhoun, Vince Liu, Jingyu Georgia State University Department of Computer Science Atlanta United States Tri-Institutional Center for Translational Research in Neuroimaging and Data Science United States Georgia Institute of Technology School of Electrical and Computer Engineering Atlanta United States Tribhuvan University Department of Applied Sciences and Chemical Engineering Nepal
Alzheimer's disease is the most common age-related problem and progresses in different stages, from cognitively normal to early mild cognitive impairment, and severe dementia. This study investigates the predictiv... 详细信息
来源: 评论