咨询与建议

限定检索结果

文献类型

  • 25 篇 期刊文献
  • 12 篇 会议

馆藏范围

  • 37 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 29 篇 理学
    • 24 篇 数学
    • 14 篇 统计学(可授理学、...
    • 5 篇 系统科学
    • 4 篇 地球物理学
    • 2 篇 物理学
    • 1 篇 大气科学
    • 1 篇 海洋科学
  • 17 篇 工学
    • 8 篇 控制科学与工程
    • 7 篇 计算机科学与技术...
    • 6 篇 软件工程
    • 2 篇 力学(可授工学、理...
    • 1 篇 土木工程
    • 1 篇 船舶与海洋工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 安全科学与工程
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 工商管理

主题

  • 3 篇 monte carlo meth...
  • 3 篇 numerical method...
  • 2 篇 variational tech...
  • 2 篇 recovery
  • 2 篇 stochastic syste...
  • 2 篇 game theory
  • 2 篇 bayesian network...
  • 2 篇 mathematical mod...
  • 1 篇 subgame perfecti...
  • 1 篇 networks(communi...
  • 1 篇 learning systems
  • 1 篇 non-asymptotic
  • 1 篇 access control
  • 1 篇 turbofan engines
  • 1 篇 data privacy
  • 1 篇 queue
  • 1 篇 maxwell equation...
  • 1 篇 interactive syst...
  • 1 篇 three-dimensiona...
  • 1 篇 mean-field

机构

  • 9 篇 kaust sri center...
  • 6 篇 cemse division t...
  • 4 篇 thuwal 23955-690...
  • 4 篇 kaust strategic ...
  • 2 篇 alexander von hu...
  • 2 篇 institute for pa...
  • 2 篇 institute for co...
  • 2 篇 campus uab carre...
  • 2 篇 center for uncer...
  • 2 篇 optimization and...
  • 2 篇 inaf istituto di...
  • 2 篇 griisg - isg int...
  • 2 篇 department of ea...
  • 2 篇 school of comput...
  • 2 篇 alexander von hu...
  • 2 篇 barcelona 08034
  • 2 篇 instituto de ast...
  • 2 篇 department of el...
  • 1 篇 department of st...
  • 1 篇 department of ph...

作者

  • 6 篇 hamidou tembine
  • 5 篇 tembine hamidou
  • 5 篇 tempone raúl
  • 4 篇 gomes diogo a.
  • 4 篇 jasra ajay
  • 3 篇 tempone raul
  • 3 篇 von schwerin eri...
  • 2 篇 herrmann felix j...
  • 2 篇 lopez oscar
  • 2 篇 liu yang
  • 2 篇 raul tempone
  • 2 篇 zhang yijun
  • 2 篇 ballesio marco
  • 2 篇 sharan shashin
  • 2 篇 beck joakim
  • 1 篇 wang y.
  • 1 篇 da silva a.
  • 1 篇 cledassou r.
  • 1 篇 bénézech jean
  • 1 篇 diez matteo

语言

  • 36 篇 英文
  • 1 篇 其他
检索条件"机构=Center for Uncertainty Quantification in Computational Science & Engineering"
37 条 记 录,以下是1-10 订阅
排序:
Nonasymptotic Convergence Rate of Quasi-Monte Carlo: Applications to Linear Elliptic PDEs with Lognormal Coefficients and Importance Samplings
arXiv
收藏 引用
arXiv 2023年
作者: Liu, Yang Tempone, Raúl Thuwal23955-6900 Saudi Arabia KAUST SRI Center for Uncertainty Quantification in Computational Science and Engineering Saudi Arabia Alexander von Humboldt Professor in Mathematics for Uncertainty Quantification RWTH Aachen University Aachen52062 Germany
This study analyzes the nonasymptotic convergence behavior of the quasi-Monte Carlo (QMC) method with applications to linear elliptic partial differential equations (PDEs) with lognormal coefficients. Building upon th... 详细信息
来源: 评论
Advancements on multi-fidelity random Fourier neural networks: application to hurricane modeling for offshore wind energy
Advancements on multi-fidelity random Fourier neural network...
收藏 引用
AIAA science and Technology Forum and Exposition, AIAA SciTech Forum 2025
作者: Davis, Owen Geraci, Gianluca Wentz, Jacqueline M. King, Ryan N. Cortiella, Alexandre Rybchuk, Alex Gomez, Miguel Sanchez Deskos, Georgios Motamed, Mohammad Optimization and Uncertainty Quantification Sandia National Laboratories AlbuquerqueNM United States Computational Data Science Sandia National Laboratories LivermoreCA United States National Wind Technology Center National Renewable Energy Laboratory GoldenCO United States Department of Applied Mathematics and Statistics University of New Mexico AlbuquerqueNM United States
Multi-fidelity approaches are emerging as effective strategies in computational science to handle otherwise intractable tasks like uncertainty quantification (UQ), training of Machine Learning (ML) models, and optimiz... 详细信息
来源: 评论
Goal-Oriented Adaptive Finite Element Multilevel Monte Carlo with Convergence Rates
arXiv
收藏 引用
arXiv 2022年
作者: Beck, Joakim Liu, Yang von Schwerin, Erik Tempone, Raúl Thuwal23955-6900 Saudi Arabia KAUST SRI Center for Uncertainty Quantification in Computational Science and Engineering Saudi Arabia Alexander von Humboldt Professor in Mathematics for Uncertainty Quantification RWTH Aachen University Aachen52062 Germany
In this study, we present an adaptive multilevel Monte Carlo (AMLMC) algorithm for approximating deterministic, real-valued, bounded linear functionals that depend on the solution of a linear elliptic PDE with a logno... 详细信息
来源: 评论
Scalable method for Bayesian experimental design without integrating over posterior distribution
arXiv
收藏 引用
arXiv 2023年
作者: Hoang, Vinh Espath, Luis Krumscheid, Sebastian Tempone, Raúl Mathematics for Uncertainty Quantification RWTH Aachen University Germany Faculty of Science University of Nottingham United Kingdom Steinbuch Center for Computing Institute for Applied and Numerical Mathematics Karlsruhe Institute of Technology Karlsruhe76131 Germany Computer Electrical and Mathematical Sciences and Engineering KAUST Alexander von Humboldt professor in Mathematics of Uncertainty Quantification RWTH Aachen University Germany
We address the computational efficiency in solving the A-optimal Bayesian design of experiments problems for which the observational map is based on partial differential equations and, consequently, is computationally... 详细信息
来源: 评论
Parameter Estimation for Partially Observed McKean-Vlasov Diffusions
arXiv
收藏 引用
arXiv 2024年
作者: Jasra, Ajay Maama, Mohamed Tempone, Raul School of Data Science The Chinese University of Hong Kong CN Shenzhen China Applied Mathematics and Computational Science Program Computer Electrical and Mathematical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal23955-6900 Saudi Arabia Chair of Mathematics for Uncertainty Quantification RWTH Aachen University Aachen52062 Germany
In this article we consider likelihood-based estimation of static parameters for a class of partially observed McKean-Vlasov (POMV) diffusion process with discrete-time observations over a fixed time interval. In part... 详细信息
来源: 评论
Particle approximation of one-dimensional mean-field-games with local interactions
arXiv
收藏 引用
arXiv 2021年
作者: Di Francesco, Marco Duisembay, Serikbolsyn Gomes, Diogo Aguiar Ribeiro, Ricardo Via Vetoio 1 Coppito L’AquilaI-67100 Italy CEMSE Division Thuwal23955-6900 Saudi Arabia KAUST SRI Center for Uncertainty Quantification in Computational Science and Engineering
We study a particle approximation for one-dimensional first-order Mean-Field-Games (MFGs) with local interactions with planning conditions. Our problem comprises a system of a Hamilton-Jacobi equation coupled with a t... 详细信息
来源: 评论
A Wasserstein Coupled Particle Filter for Multilevel Estimation
arXiv
收藏 引用
arXiv 2020年
作者: Ballesio, Marco Jasra, Ajay von Schwerin, Erik Tempone, Raúl Thuwal23955-6900 Saudi Arabia KAUST SRI Center for Uncertainty Quantification in Computational Science and Engineering Alexander von Humboldt Professor in Mathematics for Uncertainty Quantification RWTH Aachen University Germany
In this paper, we consider the filtering problem for partially observed diffusions, which are regularly observed at discrete times. We are concerned with the case when one must resort to time-discretization of the dif... 详细信息
来源: 评论
Wavefield recovery with limited-subspace weighted matrix factorizations  90
Wavefield recovery with limited-subspace weighted matrix fac...
收藏 引用
Society of Exploration Geophysicists International Exhibition and 90th Annual Meeting, SEG 2020
作者: Zhang, Yijun Sharan, Shashin Lopez, Oscar Herrmann, Felix J. Department of Electrical and Computer Engineering Georgia Institute of Technology Russia Department of Earth and Atmospheric Sciences Georgia Institute of Technology Russia School of Computational Science and Engineering Georgia Institute of Technology Russia Optimization and Uncertainty Quantification Sandia National Laboratories United States
Modern-day seismic imaging and monitoring technology increasingly rely on dense full-azimuth sampling. Unfortunately, the costs of acquiring densely sampled data rapidly become prohibitive and we need to look for ways... 详细信息
来源: 评论
Wavefield recovery with limited-subspace weighted matrix factorizations
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Yijun Sharan, Shashin Lopez, Oscar Herrmann, Felix J. Department of Electrical and Computer Engineering Georgia Institute of Technology Department of Earth and Atmospheric Sciences Georgia Institute of Technology School of Computational Science and Engineering Georgia Institute of Technology Optimization and Uncertainty Quantification Sandia National Laboratories
Modern-day seismic imaging and monitoring technology increasingly rely on dense full-azimuth sampling. Unfortunately, the costs of acquiring densely sampled data rapidly become prohibitive and we need to look for ways... 详细信息
来源: 评论
Democratizing uncertainty quantification
arXiv
收藏 引用
arXiv 2024年
作者: Seelinger, Linus Reinarz, Anne Lykkegaard, Mikkel B. Akers, Robert Alghamdi, Amal M.A. Aristoff, David Bangerth, Wolfgang Bénézech, Jean Diez, Matteo Frey, Kurt Jakeman, John D. Jørgensen, Jakob S. Kim, Ki-Tae Kent, Benjamin M. Martinelli, Massimiliano Parno, Matthew Pellegrini, Riccardo Petra, Noemi Riis, Nicolai A.B. Rosenfeld, Katherine Serani, Andrea Tamellini, Lorenzo Villa, Umberto Dodwell, Tim J. Scheichl, Robert Scientific Computing Center Karlsruhe Institute of Technology Karlsruhe Germany Department of Computer Science Durham University Durham United Kingdom digiLab Exeter United Kingdom UK Atomic Energy Authority Oxford United Kingdom Lyngby Denmark Department of Mathematics Colorado State University Fort CollinsCO United States Department of Mathematics Department of Geosciences Colorado State University Fort CollinsCO United States Centre for Integrated Materials Processes and Structures Department of Mechanical Engineering University of Bath Bath United Kingdom National Research Council Institute of Marine Engineering Rome Italy Institute for Disease Modeling Global Health Division Bill & Melinda Gates Foundation United States Optimization and Uncertainty Quantification Sandia National Laboratories AlbuquerqueNM United States University of California Merced United States National Research Council-Institute for Applied Mathematics and Information Technologies "E. Magenes" Pavia Italy Solea Energy ThetfordVT United States Copenhagen Imaging ApS Herlev Denmark The University of Texas Austin United States Heidelberg University Germany
uncertainty quantification (UQ) is vital to safety-critical model-based analyses, but the widespread adoption of sophisticated UQ methods is limited by technical complexity. In this paper, we introduce UM-Bridge (the ... 详细信息
来源: 评论