咨询与建议

限定检索结果

文献类型

  • 25 篇 期刊文献
  • 12 篇 会议

馆藏范围

  • 37 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 29 篇 理学
    • 24 篇 数学
    • 14 篇 统计学(可授理学、...
    • 5 篇 系统科学
    • 4 篇 地球物理学
    • 2 篇 物理学
    • 1 篇 大气科学
    • 1 篇 海洋科学
  • 17 篇 工学
    • 8 篇 控制科学与工程
    • 7 篇 计算机科学与技术...
    • 6 篇 软件工程
    • 2 篇 力学(可授工学、理...
    • 1 篇 土木工程
    • 1 篇 船舶与海洋工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 安全科学与工程
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 工商管理

主题

  • 3 篇 monte carlo meth...
  • 3 篇 numerical method...
  • 2 篇 variational tech...
  • 2 篇 recovery
  • 2 篇 stochastic syste...
  • 2 篇 game theory
  • 2 篇 bayesian network...
  • 2 篇 mathematical mod...
  • 1 篇 subgame perfecti...
  • 1 篇 networks(communi...
  • 1 篇 learning systems
  • 1 篇 non-asymptotic
  • 1 篇 access control
  • 1 篇 turbofan engines
  • 1 篇 data privacy
  • 1 篇 queue
  • 1 篇 maxwell equation...
  • 1 篇 interactive syst...
  • 1 篇 three-dimensiona...
  • 1 篇 mean-field

机构

  • 9 篇 kaust sri center...
  • 6 篇 cemse division t...
  • 4 篇 thuwal 23955-690...
  • 4 篇 kaust strategic ...
  • 2 篇 alexander von hu...
  • 2 篇 institute for pa...
  • 2 篇 institute for co...
  • 2 篇 campus uab carre...
  • 2 篇 center for uncer...
  • 2 篇 optimization and...
  • 2 篇 inaf istituto di...
  • 2 篇 griisg - isg int...
  • 2 篇 department of ea...
  • 2 篇 school of comput...
  • 2 篇 alexander von hu...
  • 2 篇 barcelona 08034
  • 2 篇 instituto de ast...
  • 2 篇 department of el...
  • 1 篇 department of st...
  • 1 篇 department of ph...

作者

  • 6 篇 hamidou tembine
  • 5 篇 tembine hamidou
  • 5 篇 tempone raúl
  • 4 篇 gomes diogo a.
  • 4 篇 jasra ajay
  • 3 篇 tempone raul
  • 3 篇 von schwerin eri...
  • 2 篇 herrmann felix j...
  • 2 篇 lopez oscar
  • 2 篇 liu yang
  • 2 篇 raul tempone
  • 2 篇 zhang yijun
  • 2 篇 ballesio marco
  • 2 篇 sharan shashin
  • 2 篇 beck joakim
  • 1 篇 wang y.
  • 1 篇 da silva a.
  • 1 篇 cledassou r.
  • 1 篇 bénézech jean
  • 1 篇 diez matteo

语言

  • 34 篇 英文
  • 3 篇 其他
检索条件"机构=Center for Uncertainty Quantification in Computational Science and Engineering"
37 条 记 录,以下是11-20 订阅
排序:
The selection problem for some first-order stationary mean-field games
arXiv
收藏 引用
arXiv 2019年
作者: Gomes, Diogo A. Mitake, Hiroyoshi Terai, Kengo CEMSE Division Thuwal23955-6900 Saudi Arabia KAUST SRI Center for Uncertainty Quantification in Computational Science and Engineering Graduate School of Mathematical Sciences University of Tokyo 3-8-1 Komaba Meguro-ku Tokyo153-8914 Japan
Here, we study the existence and the convergence of solutions for the vanishing discount MFG problem with a quadratic Hamiltonian. We give conditions under which the discounted problem has a unique classical solution ... 详细信息
来源: 评论
The Hessian Riemannian flow and Newton’S method for effective Hamiltonians and Mather measures
arXiv
收藏 引用
arXiv 2018年
作者: Gomes, Diogo A. Yang, Xianjin CEMSE Division Thuwal23955-6900 Saudi Arabia KAUST SRI Center for Uncertainty Quantification in Computational Science and Engineering
Effective Hamiltonians arise in multiple problems, including homogenization of Hamilton-Jacobi equations, nonlinear control systems, Hamiltonian dynamics, and Aubry-Mather theory. In Aubry-Mather theory, related objec... 详细信息
来源: 评论
Multilevel monte carlo acceleration of seismic wave propagation under uncertainty
arXiv
收藏 引用
arXiv 2018年
作者: Ballesio, Marco Beck, Joakim Pandey, Anamika Parisi, Laura von Schwerin, Erik Tempone, Raúl Thuwal23955-6900 Saudi Arabia KAUST SRI Center for Uncertainty Quantification in Computational Science and Engineering Thuwal23955-6900 Saudi Arabia Alexander von Humboldt Professor in Mathematics for Uncertainty Quantification RWTH Aachen University Germany
We interpret uncertainty in a model for seismic wave propagation by treating the model parameters as random variables, and apply the Multilevel Monte Carlo (MLMC) method to reduce the cost of approx-imating expected v... 详细信息
来源: 评论
A multifidelity multilevel Monte Carlo method for uncertainty propagation in aerospace applications  19th
A multifidelity multilevel Monte Carlo method for uncertaint...
收藏 引用
19th AIAA Non-Deterministic Approaches Conference, 2017
作者: Gianluca, Geraci Eldred, Michael S. Iaccarino, Gianluca Flow Physics and Computational Engineering Stanford University Optimization and Uncertainty Quantification Department Sandia National Laboratories StanfordCA94305 United States Computer Science Research Institute Sandia National Laboratories Optimization and Uncertainty Quantification Department AlbuquerqueNM87185 United States Flow Physics and Computational Engineering Stanford University Mechanical Engineering Department StanfordCA94305 United States
The accurate evaluation of the performance of complex engineering devices needs to rely on high-fidelity numerical simulations and the systematic characterization and propagation of uncertainties. Several sources of u... 详细信息
来源: 评论
First-order, stationary mean-field games with congestion
arXiv
收藏 引用
arXiv 2017年
作者: Evangelista, David Ferreira, Rita Gomes, Diogo A. Nurbekyan, Levon Voskanyan, Vardan CEMSE Division Thuwal23955-6900 Saudi Arabia KAUST SRI Center for Uncertainty Quantification in Computational Science and Engineering
Mean-field games (MFGs) are models for large populations of competing rational agents that seek to optimize a suitable functional. In the case of congestion, this functional takes into account the difficulty of moving... 详细信息
来源: 评论
On the uniqueness of minimizers for a class of variational problems with polyconvex integrand
arXiv
收藏 引用
arXiv 2017年
作者: Awi, Romeo Sedjro, Marc Institute for Mathematics and Its Applications 207 Church Street MinneapolisMN55455 United States CEMSE Division Thuwal23955-6900 Saudi Arabia KAUST SRI Center for Uncertainty Quantification in Computational Science and Engineering
We prove existence and uniqueness of minimizers for a family of energy functionals that arises in Elasticity and involves polyconvex integrands over a certain subset of displacement maps. This work extends previous re... 详细信息
来源: 评论
Monotone numerical methods for finite-state mean-field games
arXiv
收藏 引用
arXiv 2017年
作者: Gomes, Diogo A. Saúde, João CEMSE Division Thuwal23955-6900 Saudi Arabia KAUST SRI Uncertainty Quantification Center in Computational Science and Engineering Carnegie Mellon University Electrical and Computer Engineering department 5000 Forbes Avenue PittsburghPA15213-3890 United States
Here, we develop numerical methods for finite-state mean-field games (MFGs) that satisfy a monotonicity condition. MFGs are determined by a system of differential equations with initial and terminal boundary condition... 详细信息
来源: 评论
Application of Bayesian networks for estimation of individual psychological characteristics
arXiv
收藏 引用
arXiv 2017年
作者: Litvinenko, Alexander Litvinenko, Natalya Mamyrbayev, Orken Extreme Computing Research Center Center for Uncertainty Quantification in Computational Science & Engineering King Abdullah University of Science and Technology Thuwal23955-6900 Saudi Arabia Applied research department Institute of Mathematics and Mathematical Modeling CS MES RK Almaty Kazakhstan Institute of information and computational technologies CS MES RK Almaty Kazakhstan
An accurate qualitative and comprehensive assessment of human potential is one of the most important challenges in any company or collective. We apply Bayesian networks for developing more accurate overall estimations... 详细信息
来源: 评论
Advanced multilevel Monte Carlo methods
arXiv
收藏 引用
arXiv 2017年
作者: Jasra, Ajay Law, Kody Suciu, Carina Department of Statistics & Applied Probability National University of Singapore Singapore117546 Singapore Computer Science and Mathematics Division Oak Ridge National Laboratory Oak RidgeTN37934 United States Center for Uncertainty Quantification in Computational Science & Engineering King Abdullah University of Science and Technology Thuwal23955-6900 Saudi Arabia
This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for insta... 详细信息
来源: 评论
Multilevel monte carlo in approximate bayesian computation
arXiv
收藏 引用
arXiv 2017年
作者: Jasra, Ajay Jo, Seongil Nott, David Shoemaker, Christine Tempone, Raul Department of Statistics & Applied Probability & Operations Research Cluster National University of Singapore Singapore117546 Singapore Department of Civil & Environmental Engineering & Operations Research Cluster National University of Singapore Singapore119260 Singapore Center for Uncertainty Quantification in Computational Science & Engineering King Abdullah University of Science and Technology Thuwal23955-6900 Saudi Arabia
In the following article we consider approximate Bayesian computation (ABC) inference. We introduce a method for numerically approximating ABC posteriors using the multilevel Monte Carlo (MLMC). A sequential Monte Car... 详细信息
来源: 评论