咨询与建议

限定检索结果

文献类型

  • 179 篇 会议
  • 156 篇 期刊文献

馆藏范围

  • 335 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 198 篇 工学
    • 144 篇 计算机科学与技术...
    • 131 篇 软件工程
    • 34 篇 光学工程
    • 34 篇 生物工程
    • 32 篇 信息与通信工程
    • 22 篇 生物医学工程(可授...
    • 17 篇 控制科学与工程
    • 12 篇 机械工程
    • 12 篇 电气工程
    • 11 篇 化学工程与技术
    • 10 篇 电子科学与技术(可...
    • 8 篇 土木工程
    • 6 篇 建筑学
    • 5 篇 仪器科学与技术
    • 5 篇 安全科学与工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 材料科学与工程(可...
  • 112 篇 理学
    • 49 篇 数学
    • 40 篇 生物学
    • 39 篇 物理学
    • 19 篇 统计学(可授理学、...
    • 12 篇 化学
    • 8 篇 系统科学
  • 32 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 16 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 18 篇 医学
    • 17 篇 基础医学(可授医学...
    • 17 篇 临床医学
    • 12 篇 药学(可授医学、理...
  • 6 篇 法学
    • 6 篇 社会学
  • 3 篇 经济学
  • 3 篇 农学
  • 1 篇 文学

主题

  • 32 篇 computer science
  • 24 篇 rendering (compu...
  • 22 篇 computer graphic...
  • 15 篇 visualization
  • 14 篇 computational mo...
  • 14 篇 semantics
  • 11 篇 hardware
  • 11 篇 image reconstruc...
  • 10 篇 acceleration
  • 10 篇 solid modeling
  • 9 篇 computed tomogra...
  • 9 篇 volume rendering
  • 9 篇 computer vision
  • 8 篇 three-dimensiona...
  • 7 篇 benchmarking
  • 6 篇 casting
  • 6 篇 deep learning
  • 6 篇 pixel
  • 6 篇 data mining
  • 6 篇 sampling methods

机构

  • 31 篇 shanghai collabo...
  • 19 篇 shanghai collabo...
  • 19 篇 school of comput...
  • 18 篇 school of comput...
  • 11 篇 shanghai key lab...
  • 9 篇 institute of mod...
  • 9 篇 center for visua...
  • 8 篇 center for visua...
  • 8 篇 shenzhen key lab...
  • 8 篇 academy for engi...
  • 8 篇 center for visua...
  • 7 篇 inst. for artifi...
  • 7 篇 shanghai key lab...
  • 7 篇 center on fronti...
  • 7 篇 bio-computing re...
  • 6 篇 shanghai collabo...
  • 6 篇 peng cheng labor...
  • 6 篇 institute for ar...
  • 6 篇 center for visua...
  • 5 篇 center for visua...

作者

  • 32 篇 jiang yu-gang
  • 31 篇 a. kaufman
  • 18 篇 mueller klaus
  • 18 篇 wu zuxuan
  • 15 篇 chen jingjing
  • 14 篇 k. mueller
  • 13 篇 feng rui
  • 12 篇 arie kaufman
  • 12 篇 wang yizhou
  • 12 篇 zhang yuejie
  • 11 篇 chen zhineng
  • 11 篇 yu-gang jiang
  • 11 篇 yan bo
  • 11 篇 tan weimin
  • 10 篇 xu yong
  • 10 篇 ming wan
  • 10 篇 zhang qi
  • 9 篇 huang xuanjing
  • 8 篇 cheng ying
  • 7 篇 wei li

语言

  • 310 篇 英文
  • 23 篇 其他
  • 2 篇 中文
检索条件"机构=Center for Visual Computing and Computer Science"
335 条 记 录,以下是161-170 订阅
排序:
RoboAssembly: Learning Generalizable Furniture Assembly Policy in a Novel Multi-robot Contact-rich Simulation Environment
arXiv
收藏 引用
arXiv 2021年
作者: Yu, Mingxin Shao, Lin Chen, Zhehuan Wu, Tianhao Fan, Qingnan Mo, Kaichun Dong, Hao CFCS Computer Science Department Peking University China Artificial Intelligence Lab Stanford University United States Visual Computing Center of Tencent AI Lab China
Part assembly is a typical but challenging task in robotics, where robots assemble a set of individual parts into a complete shape. In this paper, we develop a robotic assembly simulation environment for furniture ass... 详细信息
来源: 评论
CREAM: Weakly Supervised Object Localization via Class RE-Activation Mapping
arXiv
收藏 引用
arXiv 2022年
作者: Xu, Jilan Hou, Junlin Zhang, Yuejie Feng, Rui Zhao, Rui-Wei Zhang, Tao Lu, Xuequan Gao, Shang School of Computer Science Shanghai Key Lab of Intelligent Information Processing Shanghai Collaborative Innovation Center of Intelligent Visual Computing Fudan University China Academy for Engineer and Technology Fudan University China Shanghai University of Finance and Economics China Deakin University Australia
Weakly Supervised Object Localization (WSOL) aims to localize objects with image-level supervision. Existing works mainly rely on Class Activation Mapping (CAM) derived from a classification model. However, CAM-based ... 详细信息
来源: 评论
CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition
arXiv
收藏 引用
arXiv 2021年
作者: Zheng, Tianlun Chen, Zhineng Fang, Shancheng Xie, Hongtao Jiang, Yu-Gang School of Computer Science Shanghai Collaborative Innovation Center of Intelligent Visual Computing Fudan Universtiy Shanghai200438 China School of Information Science and Technology University of Science and Technology of China Hefei230026 China
The Transformer-based encoder-decoder framework is becoming popular in scene text recognition, largely because it naturally integrates recognition clues from both visual and semantic domains. However, recent studies s... 详细信息
来源: 评论
HUMAN SIMULACRA: BENCHMARKING THE PERSONIFICATION OF LARGE LANGUAGE MODELS
arXiv
收藏 引用
arXiv 2024年
作者: Xie, Qiujie Feng, Qiming Zhang, Tianqi Li, Qingqiu Yang, Linyi Zhang, Yuejie Feng, Rui He, Liang Gao, Shang Zhang, Yue School of Computer Science Shanghai Key Lab of Intelligent Information Processing Shanghai Collaborative Innovation Center of Intelligent Visual Computing Fudan University China Tongji University China University College London United Kingdom Huawei Noah’s Ark Lab Canada Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention China Deakin University Australia Westlake University China Westlake Institute for Advanced Study China
Large Language Models (LLMs) are recognized as systems that closely mimic aspects of human intelligence. This capability has attracted the attention of the social science community, who see the potential in leveraging... 详细信息
来源: 评论
Deep Learning-Based Object Pose Estimation: A Comprehensive Survey
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Jian Sun, Wei Yang, Hui Zeng, Zhiwen Liu, Chongpei Zheng, Jin Liu, Xingyu Rahmani, Hossein Sebe, Nicu Mian, Ajmal The National Engineering Research Center for Robot Visual Perception and Control Technology College of Electrical and Information Engineering the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body Hunan University Changsha410082 China The School of Architecture and Art Central South University Changsha410082 China The Department of Automation Tsinghua University Beijing100084 China The School of Computing and Communications Lancaster University LA1 4YW United Kingdom The Department of Information Engineering and Computer Science University of Trento Trento38123 Italy The Department of Computer Science The University of Western Australia WA6009 Australia
Object pose estimation is a fundamental computer vision problem with broad applications in augmented reality and robotics. Over the past decade, deep learning models, due to their superior accuracy and robustness, hav... 详细信息
来源: 评论
Feature Rotation Invariance Learning for Point Cloud Analysis
Feature Rotation Invariance Learning for Point Cloud Analysi...
收藏 引用
Smart World Congress (SWC), IEEE
作者: Lu Shi Qi Cao Guoqing Zhang Jin Yi Yansen Huang Yigang Cen State Key Laboratory of Advanced Rail Autonomous Operation the School of Computer Science and Technology and Visual Intellgence +X International Cooperation Joint Laboratory of MOE Beijing Jiaotong University Beijing China the School of Computing Science University of Glasgow Singapore With the Key Laboratory of Big Data & Artificial Intelligence in Transportation Ministry of Education the State Key Laboratory of Advanced Rail Autonomous Operation and the School of Computer and Information Technology Beijing Jiaotong University Beijing China the College of Civil Engineering Guizhou University Guizhou Lianjian Civil Engineering Quality Testing Monitoring Center Co. LTD Guizhou China
While deep learning has significantly advanced point cloud analysis, extracting effective features from their disordered structure remains challenging. Existing approaches often rely on complex network architectures o... 详细信息
来源: 评论
M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Junke Wu, Zuxuan Ouyang, Wenhao Han, Xintong Chen, Jingjing Lim, Ser-Nam Jiang, Yu-Gang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University China Shanghai Collaborative Innovation Center on Intelligent Visual Computing China Huya Inc Meta AI
The widespread dissemination of Deepfakes demands effective approaches that can detect perceptually convincing forged images. In this paper, we aim to capture the subtle manipulation artifacts at different scales usin... 详细信息
来源: 评论
Revisiting Adversarial Robustness Distillation: Robust Soft Labels Make Student Better
Revisiting Adversarial Robustness Distillation: Robust Soft ...
收藏 引用
International Conference on computer Vision (ICCV)
作者: Bojia Zi Shihao Zhao Xingjun Ma Yu-Gang Jiang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan Univeristy Shanghai Collaborative Innovation Center on Intelligent Visual Computing School of Information Technology Deakin University Geelong Australia
Adversarial training is one effective approach for training robust deep neural networks against adversarial attacks. While being able to bring reliable robustness, adversarial training (AT) methods in general favor hi... 详细信息
来源: 评论
Revisiting adversarial robustness distillation: Robust soft labels make student better
arXiv
收藏 引用
arXiv 2021年
作者: Zi, Bojia Zhao, Shihao Ma, Xingjun Jiang, Yu-Gang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan Univeristy Shanghai Collaborative Innovation Center on Intelligent Visual Computing School of Information Technology Deakin University Geelong Australia
Adversarial training is one effective approach for training robust deep neural networks against adversarial attacks. While being able to bring reliable robustness, adversarial training (AT) methods in general favor hi... 详细信息
来源: 评论
MM-Pyramid: Multimodal Pyramid Attentional Network for Audio-visual Event Localization and Video Parsing
arXiv
收藏 引用
arXiv 2021年
作者: Yu, Jiashuo Cheng, Ying Zhao, Rui-Wei Feng, Rui Zhang, Yuejie School of Computer Science Shanghai Key Laboratory of Intelligent Information Processing Fudan University China Academy for Engineering and Technology Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China
Recognizing and localizing events in videos is a fundamental task for video understanding. Since events may occur in auditory and visual modalities, multimodal detailed perception is essential for complete scene compr... 详细信息
来源: 评论