咨询与建议

限定检索结果

文献类型

  • 187 篇 会议
  • 159 篇 期刊文献

馆藏范围

  • 346 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 209 篇 工学
    • 153 篇 计算机科学与技术...
    • 133 篇 软件工程
    • 36 篇 生物工程
    • 34 篇 光学工程
    • 33 篇 信息与通信工程
    • 24 篇 控制科学与工程
    • 23 篇 生物医学工程(可授...
    • 15 篇 电气工程
    • 13 篇 机械工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 化学工程与技术
    • 8 篇 土木工程
    • 6 篇 建筑学
    • 5 篇 仪器科学与技术
    • 5 篇 安全科学与工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 材料科学与工程(可...
  • 116 篇 理学
    • 50 篇 数学
    • 42 篇 生物学
    • 40 篇 物理学
    • 19 篇 统计学(可授理学、...
    • 13 篇 化学
    • 8 篇 系统科学
  • 33 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 16 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 20 篇 医学
    • 19 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 6 篇 法学
    • 6 篇 社会学
  • 3 篇 经济学
  • 3 篇 农学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 32 篇 computer science
  • 25 篇 rendering (compu...
  • 22 篇 computer graphic...
  • 16 篇 visualization
  • 14 篇 computational mo...
  • 14 篇 semantics
  • 11 篇 hardware
  • 11 篇 image reconstruc...
  • 11 篇 solid modeling
  • 10 篇 acceleration
  • 9 篇 three-dimensiona...
  • 9 篇 computed tomogra...
  • 9 篇 volume rendering
  • 9 篇 computer vision
  • 7 篇 benchmarking
  • 6 篇 casting
  • 6 篇 deep learning
  • 6 篇 pixel
  • 6 篇 data mining
  • 6 篇 sampling methods

机构

  • 34 篇 shanghai collabo...
  • 21 篇 shanghai collabo...
  • 20 篇 school of comput...
  • 18 篇 school of comput...
  • 11 篇 shanghai key lab...
  • 10 篇 institute of mod...
  • 9 篇 center for visua...
  • 8 篇 center for visua...
  • 8 篇 inst. for artifi...
  • 8 篇 shenzhen key lab...
  • 8 篇 center on fronti...
  • 8 篇 academy for engi...
  • 8 篇 center for visua...
  • 7 篇 shanghai key lab...
  • 7 篇 bio-computing re...
  • 6 篇 shanghai key lab...
  • 6 篇 school of artifi...
  • 6 篇 university of ch...
  • 6 篇 shanghai collabo...
  • 6 篇 peng cheng labor...

作者

  • 34 篇 jiang yu-gang
  • 31 篇 a. kaufman
  • 18 篇 mueller klaus
  • 18 篇 wu zuxuan
  • 17 篇 chen jingjing
  • 15 篇 wang yizhou
  • 14 篇 k. mueller
  • 13 篇 feng rui
  • 12 篇 arie kaufman
  • 12 篇 zhang yuejie
  • 11 篇 chen zhineng
  • 11 篇 yu-gang jiang
  • 11 篇 zhang qi
  • 11 篇 yan bo
  • 11 篇 tan weimin
  • 10 篇 xu yong
  • 10 篇 ming wan
  • 10 篇 huang xuanjing
  • 9 篇 cheng ying
  • 8 篇 zhong fangwei

语言

  • 300 篇 英文
  • 44 篇 其他
  • 2 篇 中文
检索条件"机构=Center for Visual Computing and Computer Science"
346 条 记 录,以下是231-240 订阅
排序:
Skin color simulation - Review and analysis of available Monte Carlo-based photon transport simulation models  25
Skin color simulation - Review and analysis of available Mon...
收藏 引用
25th Color and Imaging Conference: Color science and Engineering Systems, Technologies, and Applications, CIC 2017
作者: Bauer, Jacob R. Pedersen, Marius Hardeberg, Jon Y. Verdaasdonk, Rudolf NTNU Department of Computer Science Norwegian Colour and Visual Computing Laboratory Gjøvik Norway VU University Medical Center Dept. of Physics and Medical Technology Amsterdam Netherlands
Optical assessment is a useful tool for non-invasive skin assessment avoiding scarring, time delayed diagnosis, hurting, and inconvenience for patient and practitioner. This has led to wide adaption of digital imaging... 详细信息
来源: 评论
End-to-end, single-stream temporal action detection in untrimmed videos  28
End-to-end, single-stream temporal action detection in untri...
收藏 引用
28th British Machine Vision Conference, BMVC 2017
作者: Buch, Shyamal Escorcia, Victor Ghanem, Bernard Fei-Fei, Li Niebles, Juan Carlos Stanford Vision and Learning Lab. Dept. of Computer Science Stanford University United States Image and Video Understanding Lab. Visual Computing Center KAUST Saudi Arabia
In this work, we present a new intuitive, end-to-end approach for temporal action detection in untrimmed videos. We introduce our new architecture for Single-Stream Temporal Action Detection (SS-TAD), which effectivel... 详细信息
来源: 评论
Deep learning on image denoising: An overview
arXiv
收藏 引用
arXiv 2019年
作者: Tian, Chunwei Fei, Lunke Zheng, Wenxian Xu, Yong Zuo, Wangmeng Lin, Chia-Wen Bio-Computing Research Center Harbin Institute of Technology Shenzhen Shenzhen Guangdong518055 China Shenzhen Key Laboratory of Visual Object Detection and Recognition Shenzhen Guangdong518055 China School of Computers Guangdong University of Technology Guangzhou Guangdong510006 China Tsinghua Shenzhen International Graduate School Shenzhen Guangdong518055 China Peng Cheng Laboratory Shenzhen Guangdong518055 China School of Computer Science and Technology Harbin Institute of Technology Harbin Heilongjiang150001 China Department of Electrical Engineering Institute of Communications Engineering National Tsing Hua University Hsinchu Taiwan
Deep learning techniques have obtained much attention in image denoising. However, deep learning methods of different types deal with the noise have enormous differences. Specifically, discriminative learning based on... 详细信息
来源: 评论
A two-stage subspace trust region approach for deep neural network training
arXiv
收藏 引用
arXiv 2018年
作者: Dudar, Viacheslav Chierchia, Giovanni Chouzenoux, Emilie Pesquet, Jean-Christophe Semenov, Vladimir Taras Shevchenko National University of Kyiv Faculty of Computer Science and Cybernetics Ukraine Université Paris Est LIGM UMR 8049 CNRS ENPC ESIEE Paris UPEM Noisy-le-GrandF-93162 France Center for Visual Computing CentraleSupelec University Paris-Saclay Chatenay-Malabry France
—In this paper, we develop a novel second-order method for training feed-forward neural nets. At each iteration, we construct a quadratic approximation to the cost function in a low-dimensional subspace. We minimize ... 详细信息
来源: 评论
A probabilistic incremental proximal gradient method
arXiv
收藏 引用
arXiv 2018年
作者: Akyildiz, Ömer Deniz Chouzenoux, Émilie Elvira, Víctor Míguez, Joaquín Dept. of Computer Science Dept. of Statistics University of Warwick Alan Turing Institute London United Kingdom Center for Visual Computing INRIA Saclay CentraleSupélec Gif-sur-Yvette France Villeneuve d’Ascq France Dept. of Signal Theory and Communications Universidad Carlos III de Madrid Leganés28912 Spain
In this paper, we propose a probabilistic optimization method, named probabilistic incremental proximal gradient (PIPG) method, by developing a probabilistic interpretation of the incremental proximal gradient algorit... 详细信息
来源: 评论
A two-stage subspace trust region approach for deep neural network training
A two-stage subspace trust region approach for deep neural n...
收藏 引用
European Signal Processing Conference (EUSIPCO)
作者: Viacheslav Dudar Giovanni Chierchia Emilie Chouzenoux Jean-Christophe Pesquet Vladimir Semenov Faculty of Computer Science and Cybernetics Taras Shevchenko National University of Kyiv Ukraine Universite Paris Est UPEM Noisy-le-Grand France Center for Visual Computing University Paris-Saclay Chatenay-Malabry France Center for Visual Computing CentraleSupelec University Paris-Saclay Chatenay-Malabry France
In this paper, we develop a novel second-order method for training feed-forward neural nets. At each iteration, we construct a quadratic approximation to the cost function in a low-dimensional subspace. We minimize th... 详细信息
来源: 评论
Automatic image cropping for visual aesthetic enhancement using deep neural networks and cascaded regression
arXiv
收藏 引用
arXiv 2017年
作者: Guo, Guanjun Wang, Hanzi Shen, Chunhua Yan, Yan Liao, Hong-Yuan Mark Fujian Key Laboratory of Sensing and Computing for Smart City School of Information Science and Engineering Xiamen University Xiamen Fujian361005 China Australian Center for Visual Technologies School of Computer Science University of Adelaide SA5005 Australia Institute of Information Science Academia Sinica Taipei115 Taiwan
Despite recent progress, computational visual aesthetic is still challenging. Image cropping, which refers to the removal of unwanted scene areas, is an important step to improve the aesthetic quality of an image. How... 详细信息
来源: 评论
A novel dual ascent algorithm for solving the min-cost flow problem  18
A novel dual ascent algorithm for solving the min-cost flow ...
收藏 引用
18th Workshop on Algorithm Engineering and Experiments 2016, ALENEX 2016
作者: Becker, Ruben Fickert, Maximilian Karrenbauer, Andreas Max Planck Institute for Informatics Saarbriicken Germany Max Planck Center for Visual Computing and Communication Saarbriicken Germany Saarbriicken Graduate School of Computer Science Saarbriicken Germany
We present a novel alg orithm for the min-cost flow problem that is competitive with recent third-party implementations of well-known algorithms for this problem and even outperforms them on certain realistic instance... 详细信息
来源: 评论
Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge
arXiv
收藏 引用
arXiv 2018年
作者: Veta, Mitko Heng, Yujing J. Stathonikos, Nikolas Bejnordi, Babak Ehteshami Beca, Francisco Wollmann, Thomas Rohr, Karl Shah, Manan A. Wang, Dayong Rousson, Mikael Hedlund, Martin Tellez, David Ciompi, Francesco Zerhouni, Erwan Lanyi, David Viana, Matheus Kovalev, Vassili Liauchuk, Vitali Phoulady, Hady Ahmady Qaiser, Talha Graham, Simon Rajpoot, Nasir Sjöblom, Erik Molin, Jesper Paeng, Kyunghyun Hwang, Sangheum Park, Sunggyun Jia, Zhipeng Chang, Eric I-Chao Xu, Yan Beck, Andrew H. Van Diest, Paul J. Pluim, Josien P.W. Medical Image Analysis Group Eindhoven University of Technology Eindhoven Netherlands Department of Pathology Beth Israel Deaconess Medical Center Harvard Medical School BostonMA United States Department of Pathology University Medical Center Utrecht Utrecht Netherlands Diagnostic Image Analysis Group Radboud University Medical Center Nijmegen Netherlands Department of Pathology Stanford University School of Medicine Biomedical Computer Vision Group University of Heidelberg BIOQUANT IPMB DKFZ Heidelberg Germany Harker School San Jose United States ContextVision AB Linköping Sweden Foundations of Cognitive Computing IBM Research Zürich Rüschlikon Switzerland Visual Analytics and Insights IBM Research Brazil Saõ Paulo Brazil Biomedical Image Analysis Department United Institute of Informatics Minsk Belarus Department of Computer Science and Engineering University of South Florida TampaFL United States Department of Computer Science University of Warwick Warwick United Kingdom Research Sectra Linköping Sweden Lunit Inc. Seoul Korea Republic of Institute for Interdisciplinary Information Sciences Tsinghua University Beijing China Microsoft Research Beijing China Biology and Medicine Engineering Beihang University Beijing China IBM Research Brazil
Tumor proliferation is an important biomarker indicative of the prognosis of breast cancer patients. Assessment of tumor proliferation in a clinical setting is a highly subjective and labor-intensive task. Previous ef... 详细信息
来源: 评论
Symbolic-numeric integration of the dynamical cosserat equations
arXiv
收藏 引用
arXiv 2017年
作者: Lyakhov, Dmitry A. Gerdt, Vladimir P. Weber, Andreas G. Michels, Dominik L. Visual Computing Center King Abdullah University of Science and Technology Al Khawarizmi Building Thuwal23955-6900 Saudi Arabia Department of Computer Science Stanford University 353 Serra Mall StanfordCA94305 United States Laboratory of Information Technologies Joint Institute for Nuclear Research 6 Joliot-Curie St Dubna141980 Russia Peoples' Friendship University of Russia 6 Miklukho-Maklaya St Moscow117198 Russia Institute of Computer Science II University of Bonn Friedrich-Ebert-Allee 144 Bonn53113 Germany
We devise a symbolic-numeric approach to the integration of the dynamical part of the Cosserat equations, a system of nonlinear partial differential equations describing the mechanical behavior of slender structures, ... 详细信息
来源: 评论