咨询与建议

限定检索结果

文献类型

  • 42 篇 会议
  • 29 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 73 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 41 篇 工学
    • 29 篇 计算机科学与技术...
    • 27 篇 软件工程
    • 11 篇 光学工程
    • 10 篇 信息与通信工程
    • 9 篇 机械工程
    • 7 篇 生物医学工程(可授...
    • 6 篇 生物工程
    • 5 篇 电气工程
    • 5 篇 控制科学与工程
    • 4 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 2 篇 化学工程与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 建筑学
    • 1 篇 航空宇航科学与技...
    • 1 篇 城乡规划学
  • 24 篇 理学
    • 10 篇 物理学
    • 8 篇 生物学
    • 7 篇 数学
    • 3 篇 化学
    • 2 篇 统计学(可授理学、...
    • 1 篇 地理学
  • 10 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 医学
    • 5 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 艺术学

主题

  • 10 篇 pattern recognit...
  • 8 篇 image segmentati...
  • 7 篇 feature extracti...
  • 6 篇 optical characte...
  • 6 篇 databases
  • 6 篇 training
  • 6 篇 character recogn...
  • 5 篇 support vector m...
  • 5 篇 face recognition
  • 5 篇 computer vision
  • 4 篇 computational mo...
  • 4 篇 face
  • 4 篇 text recognition
  • 3 篇 motion estimatio...
  • 3 篇 convolution
  • 3 篇 reservoirs
  • 3 篇 benchmark testin...
  • 3 篇 water resources
  • 3 篇 image color anal...
  • 3 篇 image recognitio...

机构

  • 8 篇 computer vision ...
  • 5 篇 national laborat...
  • 4 篇 center of comput...
  • 3 篇 institute of med...
  • 3 篇 l3i laboratory u...
  • 3 篇 university of ch...
  • 3 篇 cvpr unit indian...
  • 3 篇 computer vision ...
  • 2 篇 karachi pakistan
  • 2 篇 the center for v...
  • 2 篇 institute of dee...
  • 2 篇 paul c. lauterbu...
  • 2 篇 shanghai ai lab
  • 2 篇 computer vision ...
  • 2 篇 siat branch shen...
  • 2 篇 dept. of profess...
  • 2 篇 computer vision ...
  • 2 篇 computer vision ...
  • 2 篇 jiangsu provinci...
  • 2 篇 centre for patte...

作者

  • 9 篇 umapada pal
  • 9 篇 pal umapada
  • 5 篇 imran siddiqi
  • 5 篇 lladós josep
  • 4 篇 escalera sergio
  • 4 篇 karatzas dimosth...
  • 4 篇 li stan z.
  • 4 篇 stan z. li
  • 4 篇 wan jun
  • 4 篇 josep lladós
  • 3 篇 guo guodong
  • 3 篇 maier andreas
  • 3 篇 bunke horst
  • 3 篇 partha pratim ro...
  • 3 篇 chawki djeddi
  • 3 篇 momina moetesum
  • 3 篇 escalante hugo j...
  • 3 篇 dey sounak
  • 3 篇 qiao yu
  • 3 篇 dutta anjan

语言

  • 71 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"机构=Center of Computer Vision and Pattern Recognition"
73 条 记 录,以下是61-70 订阅
排序:
CASIA-SURF: A Large-scale Multi-modal Benchmark for Face Anti-spoofing
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Shifeng Liu, Ajian Wan, Jun Liang, Yanyan Guo, Guogong Escalera, Sergio Escalante, Hugo Jair Li, Stan Z. National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China Macau University of Science and Technology Macau China Institute of Deep Learning Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application Universitat de Barcelona Computer Vision Center Barcelona Catalonia Instituto Nacional de Astrofsica Ptica y Electrnica Puebla72840 Mexico
Face anti-spoofing is essential to prevent face recognition systems from a security breach. Much of the progresses have been made by the availability of face anti-spoofing benchmark datasets in recent years. However, ... 详细信息
来源: 评论
ICDAR2019 Robust Reading Challenge on Multi-lingual Scene Text Detection and recognition — RRC-MLT-2019
ICDAR2019 Robust Reading Challenge on Multi-lingual Scene Te...
收藏 引用
International Conference on Document Analysis and recognition
作者: Nibal Nayef Yash Patel Michal Busta Pinaki Nath Chowdhury Dimosthenis Karatzas Wafa Khlif Jiri Matas Umapada Pal Jean-Christophe Burie Cheng-lin Liu Jean-Marc Ogier no affiliation The Robotics Institute Carnegie Mellon Universiry Pittsburgh USA Department of Cybernetics Czech Technical University Prague Czech Republic CVPR unit Indian Statistical Institute India Computer Vision Center Universitat Autònoma de Barcelona Spain L3i Laboratory University of La Rochelle France National Laboratory of Pattern Recognition Institute of Automation of Chinese Academy of Sciences China
With the growing cosmopolitan culture of modern cities, the need of robust Multi-Lingual scene Text (MLT) detection and recognition systems has never been more immense. With the goal to systematically benchmark and pu... 详细信息
来源: 评论
Automatic classification of cancerous tissue in laserendomicroscopy images of the oral cavity using deep learning
arXiv
收藏 引用
arXiv 2017年
作者: Aubreville, Marc Knipfer, Christian Oetter, Nicolai Jaremenko, Christian Rodner, Erik Denzler, Joachim Bohr, Christopher Neumann, Helmut Stelzle, Florian Maier, Andreas Pattern Recognition Lab Computer Science Friedrich-Alexander-Universität Erlangen-Nürnberg Germany Department of Oral and Maxillofacial Surgery University Medical Center Hamburg-Eppendorf Germany Friedrich-Alexander-Universität Erlangen-Nürnberg Germany Department of Oral and Maxillofacial Surgery University Medical Center Erlangen Friedrich-Alexander- Universität Erlangen-Nürnberg Germany Computer Vision Group Friedrich-Schiller-Universität Jena Germany Department of Otorhinolaryngology Head and Neck Surgery University Medical Center Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg Germany First Department of Internal Medicine University Medical Center Mainz Johannes Gutenberg-Universität Mainz Germany
Oral Squamous Cell Carcinoma (OSCC) is a common type of cancer of the oral epithelium. Despite their high impact on mortality, sufficient screening methods for early diagnosis of OSCC often lack accuracy and thus OSCC... 详细信息
来源: 评论
Cross-ethnicity face anti-spoofing recognition challenge: A review
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Ajian Li, Xuan Wan, Jun Liang, Yanyan Escalera, Sergio Escalante, Hugo Jair Madadi, Meysam Jin, Yi Wu, Zhuoyuan Yu, Xiaogang Tan, Zichang Yuan, Qi Yang, Ruikun Zhou, Benjia Guo, Guodong Li, Stan Z. Faculty of Information Technology Avenida WaiLong Taipa Macau China School of Computer and Information Technology Beijing Jiaotong University Beijing China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Science Beijing China Universitat de Barcelona and Computer Vision Center Barcelona Instituto Nacional de Astrofísica Óptica y Electrónica Puebla Mexico School of Software Beihang University Beijing China Institute of Deep Learning Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application Beijing Westlake University Hangzhou China
Face anti-spoofing is critical to prevent face recognition systems from a security breach. The biometrics community has achieved impressive progress recently due the excellent performance of deep neural networks and t... 详细信息
来源: 评论
Clustering-based Discriminative Locality Alignment for Face Gender recognition
Clustering-based Discriminative Locality Alignment for Face ...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robotics and Systems
作者: Duo Chen Jun Cheng Dacheng Tao College of Communication Engineering Chongqing University Chongqing 400044 China. He is also with the Shenzhen Key Laboratory of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China. He is also with the Chinese University of Hong Kong and Guangdong Provincial Key Laboratory of Robotics and Intelligent System. Center for Quantum Computation and Intelligent System Faculty of Engineering and Information Technology University of Technology Sydney New South Wales 2007 Australia.
To facilitate human-robot interactions, human gender information is very important. Motivated by the success of manifold learning for visual recognition, we present a novel clustering-based discriminative locality ali... 详细信息
来源: 评论
ChaLearn looking at people: IsoGD and ConGD large-scale RGB-D gesture recognition
arXiv
收藏 引用
arXiv 2019年
作者: Wan, Jun Lin, Chi Wen, Longyin Li, Yunan Miao, Qiguang Escalera, Sergio Anbarjafari, Gholamreza Guyon, Isabelle Guo, Guodong Li, Stan Z. National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China JD Finance Mountain ViewCA United States University of Southern California Los AngelesCA90089-0911 United States School of Computer Science and Technology Xidian University & Xi'an Key Laboratory of Big Data and Intelligent Vision 2nd South Taibai Road Xi'an710071 China Universitat de Barcelona Computer Vision Center Spain iCV Lab Institute of Technology University of Tartu Estonia Faculty of Engineering Hasan Kalyoncu University Gaziantep Turkey Institute of Digital Technologies Loughborough University London United Kingdom ChaLearn United States University Paris-Saclay France institute of Deep Learning Baidu Research National Engineering Laboratory for Deep Learning Technology and Application China
The ChaLearn large-scale gesture recognition challenge has been run twice in two workshops in conjunction with the International Conference on pattern recognition (ICPR) 2016 and International Conference on computer V... 详细信息
来源: 评论
A Survey of the Self Supervised Learning Mechanisms for vision Transformers
arXiv
收藏 引用
arXiv 2024年
作者: Khan, Asifullah Sohail, Anabia Fiaz, Mustansar Hassan, Mehdi Afridi, Tariq Habib Marwat, Sibghat Ullah Munir, Farzeen Ali, Safdar Naseem, Hannan Zaheer, Muhammad Zaigham Ali, Kamran Sultana, Tangina Tanoli, Ziaurrehman Akhter, Naeem Pattern Recognition Lab DCIS PIEAS Nilore Islamabad45650 Pakistan PIEAS Nilore Islamabad45650 Pakistan Deep Learning Lab Center for Mathematical Sciences PIEAS Nilore Islamabad45650 Pakistan Center of Secure Cyber-Physical Security Systems Khalifa University Abu Dhabi United Arab Emirates IBM Research United States Department of Computer Science Air University Islamabad Pakistan Department of Computer Science and Engineering Kyung Hee University Global Campus 1732 Gyeonggi-do Yongin17104 Korea Republic of Department of Electrical Engineering and Automation Aalto University Finland Finnish Center of Artificial Center Finland Faculty of Engineering and Green Technology Universiti Tunku Abdul Rahman Malaysia Computer Vision Department Mohamed Bin Zayed University of Artificial Intelligence United Arab Emirates Karachi Pakistan Department of Electronics and Communication Engineering Hajee Mohammad Danesh Science and Technology University Bangladesh HiLIFE University of Helsinki Finland
vision Transformers (ViTs) have recently demonstrated remarkable performance in computer vision tasks. However, their parameter-intensive nature and reliance on large amounts of data for effective performance have shi... 详细信息
来源: 评论
Group shift pointwise convolution for volumetric medical image segmentation
arXiv
收藏 引用
arXiv 2021年
作者: He, Junjun Ye, Jin Li, Cheng Song, Diping Chen, Wanli Wang, Shanshan Gu, Lixu Qiao, Yu School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Shenzhen China Shanghai AI Lab Shanghai China Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Shenzhen China The Chinese University of Hong Kong Hong Kong Peng Cheng Laboratory Guangdong Shenzhen China Pazhou Lab Guangdong Guangzhou China
Recent studies have witnessed the effectiveness of 3D convolutions on segmenting volumetric medical images. Compared with the 2D counterparts, 3D convolutions can capture the spatial context in three dimensions. Never... 详细信息
来源: 评论
Multi-View Partial (MVP) Point Cloud Challenge 2021 on Completion and Registration: Methods and Results
arXiv
收藏 引用
arXiv 2021年
作者: Pan, Liang Wu, Tong Cai, Zhongang Liu, Ziwei Yu, Xumin Rao, Yongming Lu, Jiwen Zhou, Jie Xu, Mingye Luo, Xiaoyuan Fu, Kexue Gao, Peng Wang, Manning Wang, Yali Qiao, Yu Zhou, Junsheng Wen, Xin Xiang, Peng Liu, Yu-Shen Han, Zhizhong Yan, Yuanjie An, Junyi Zhu, Lifa Lin, Changwei Liu, Dongrui Li, Xin Gómez-Fernández, Francisco Wang, Qinlong Yang, Yang S-Lab Nanyang Technological University Singapore SenseTime-CUHK Joint Lab The Chinese University of Hong Kong Hong Kong Sensetime Research Shanghai AI Laboratory China Department of Automation Tsinghua University China University of Chinese Academy of Sciences China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Digital Medical Research Center School of Basic Medical Science Fudan University China School of Software BNRist Tsinghua University China *** Wayne State University State Key Laboratory for Novel Software Technology Nanjing University China DeepGlint Shanghai Jiao Tong University China Sichuan University China Xi'an Jiaotong University China
As real-scanned point clouds are mostly partial due to occlusions and viewpoints, reconstructing complete 3D shapes based on incomplete observations becomes a fundamental problem for computer vision. With a single inc... 详细信息
来源: 评论
A novel hybrid convolutional neural network for accurate organ segmentation in 3d head and neck CT images
arXiv
收藏 引用
arXiv 2021年
作者: Chen, Zijie Li, Cheng He, Junjun Ye, Jin Song, Diping Wang, Shanshan Gu, Lixu Qiao, Yu Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Shenzhen China Shanghai AI Lab Shanghai China Shenzhen Yino Intelligence Techonology Co. Ltd. Guangdong Shenzhen China Co. Ltd. Guangdong Shenzhen China Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Shenzhen China School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Peng Cheng Laboratory Guangdong Shenzhen China Pazhou Lab Guangdong Guangzhou China
Radiation therapy (RT) is widely employed in the clinic for the treatment of head and neck (HaN) cancers. An essential step of RT planning is the accurate segmentation of various organs-at-risks (OARs) in HaN CT image... 详细信息
来源: 评论