咨询与建议

限定检索结果

文献类型

  • 2 篇 会议
  • 1 篇 期刊文献

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 理学
    • 1 篇 大气科学
  • 1 篇 工学
    • 1 篇 计算机科学与技术...
    • 1 篇 软件工程

主题

  • 2 篇 generative adver...
  • 1 篇 scalability
  • 1 篇 transformers
  • 1 篇 analytical model...
  • 1 篇 correlation
  • 1 篇 synthetic data
  • 1 篇 data models
  • 1 篇 data analysis
  • 1 篇 training
  • 1 篇 principal compon...

机构

  • 2 篇 center of excell...
  • 1 篇 department of ge...
  • 1 篇 columbia univers...
  • 1 篇 environment and ...
  • 1 篇 earth system sci...
  • 1 篇 noaa/nws weather...
  • 1 篇 slovak hydromete...
  • 1 篇 climate research...
  • 1 篇 alfred wegener i...
  • 1 篇 climatic researc...
  • 1 篇 goddard earth sc...
  • 1 篇 scripps institut...
  • 1 篇 united kingdom c...
  • 1 篇 department of ge...
  • 1 篇 tel aviv univers...
  • 1 篇 school of inform...
  • 1 篇 australian resea...
  • 1 篇 aristotle univer...
  • 1 篇 alaska native tr...
  • 1 篇 australian resea...

作者

  • 1 篇 blunden j.
  • 1 篇 de oliveira ramo...
  • 1 篇 dunn r.j.h.
  • 1 篇 da silveira aria...
  • 1 篇 ariane santos da...
  • 1 篇 garcia luciano g...
  • 1 篇 luciano garim ga...
  • 1 篇 gabriel de olive...
  • 1 篇 josé manuel marq...
  • 1 篇 boyer t.
  • 1 篇 de oliveira josé...

语言

  • 3 篇 英文
检索条件"机构=Center of Excellence in Geological and Numerical Modeling"
3 条 记 录,以下是1-10 订阅
排序:
Enhancing Synthetic Well Logs with PCA-Based GAN Models  23
Enhancing Synthetic Well Logs with PCA-Based GAN Models
收藏 引用
23rd IEEE International Conference on Machine Learning and Applications, ICMLA 2024
作者: Garcia, Luciano Garim De Oliveira Ramos, Gabriel De Oliveira, José Manuel Marques Teixeira Da Silveira, Ariane Santos Universidade do Vale do Rio dos Sinos Applied Computing Graduate Program São Leopoldo Brazil Center of Excellence in Geological and Numerical Modeling Universidade do Vale do Rio dos Sinos São Leopoldo Brazil
The generation of synthetic well log data is crucial for enhancing the understanding and exploration of subsurface reservoirs. This paper introduces a novel Generative Adversarial Network (GAN) model that incorporates... 详细信息
来源: 评论
Enhancing Synthetic Well Logs with PCA-Based GAN Models
Enhancing Synthetic Well Logs with PCA-Based GAN Models
收藏 引用
International Conference on Machine Learning and Applications (ICMLA)
作者: Luciano Garim Garcia Gabriel De Oliveira Ramos José Manuel Marques Teixeira de Oliveira Ariane Santos Da Silveira Applied Computing Graduate Program Universidade do Vale do Rio dos Sinos São Leopoldo Brazil Center of Excellence in Geological and Numerical Modeling Universidade do Vale do Rio dos Sinos São Leopoldo Brazil
The generation of synthetic well log data is crucial for enhancing the understanding and exploration of subsurface reservoirs. This paper introduces a novel Generative Adversarial Network (GAN) model that incorporates... 详细信息
来源: 评论
INTRODUCTION
收藏 引用
Bulletin of the American Meteorological Society 2024年 第8期105卷 S1-S11页
作者: Boyer, T. Blunden, J. Dunn, R.J.H. NOAA/NESDIS National Centers for Environmental Information Silver Spring Maryland NOAA/NESDIS National Centers for Environmental Information Asheville North Carolina Met Office Hadley Centre Exeter United Kingdom European Centre for Medium-Range Weather Forecasts Reading United Kingdom University of Maryland College Park Maryland Scripps Institution of Oceanography University of California San Diego La Jolla California NOAA/NWS National Centers for Environmental Prediction Climate Prediction Center College Park Maryland Brandenburg University of Technology (BTU) Cottbus-Senftenberg Germany Servicio Meteorológico Nacional Buenos Aires Argentina NOAA/OAR Physical Sciences Laboratory Boulder Colorado European Centre for Medium-Range Weather Forecasts Bonn Germany Center for Geophysical Research and School of Physics University of Costa Rica San José Costa Rica Department of Meteorology and National Centre for Earth Observation University of Reading Reading United Kingdom Centro Nacional de Monitoramento e Alertas de Desastres Naturais CEMADEN São Paulo Brazil Université Grenoble Alpes Institut des Géosciences de l’Environnement IRD CNRS Grenoble INP Grenoble France Hampton University Hampton Virginia Seychelles Meteorological Authority Mahe Seychelles Section for Glaciers Ice and Snow Norwegian Water Resources and Energy Directorate Oslo Norway National Research Institute for Agriculture Food and Environment (INRAE) CARRTEL Université Savoie Mont Blanc Thonon les Bains France Graduate School of Agriculture Osaka Metropolitan University Sakai Japan Science Faculty Universidad Nacional de Colombia Bogotá Colombia University of Bremen Bremen Germany NOAA Global Monitoring Laboratory Boulder Colorado Servicio Nacional de Meteorología e Hidrología del Perú Lima Perú Centro de Investigaciones sobre Desertificación – Spanish National Research Council (CSIC-UV-GVA) Valencia Spain Hydro-Climate Extremes Lab (H-CEL) Ghent University Ghent Belgium Department o
In 2023, La Niña conditions that generally prevailed in the eastern Pacific Ocean from mid-2020 into early 2023 gave way to a strong El Niño by October. Atmospheric concentrations of Earth’s major greenhous...
来源: 评论