咨询与建议

限定检索结果

文献类型

  • 15 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 23 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 10 篇 理学
    • 9 篇 数学
    • 2 篇 化学
    • 1 篇 物理学
  • 8 篇 工学
    • 4 篇 计算机科学与技术...
    • 3 篇 软件工程
    • 2 篇 机械工程
    • 2 篇 土木工程
    • 2 篇 化学工程与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 建筑学
    • 1 篇 测绘科学与技术
    • 1 篇 轻工技术与工程
  • 1 篇 管理学
    • 1 篇 图书情报与档案管...

主题

  • 6 篇 computer graphic...
  • 5 篇 computer science
  • 3 篇 application soft...
  • 3 篇 mathematics
  • 2 篇 rendering (compu...
  • 2 篇 lattice animals
  • 2 篇 polyominoes
  • 2 篇 solid modeling
  • 2 篇 machinery
  • 1 篇 progressive comp...
  • 1 篇 crystallography
  • 1 篇 euclidean distan...
  • 1 篇 finite cell meth...
  • 1 篇 left atrial volu...
  • 1 篇 biology
  • 1 篇 approximation al...
  • 1 篇 left atrial
  • 1 篇 multiresolution ...
  • 1 篇 information reso...
  • 1 篇 concurrent compu...

机构

  • 2 篇 chair of computa...
  • 2 篇 computer science...
  • 2 篇 department of ma...
  • 2 篇 center of graphi...
  • 2 篇 center for graph...
  • 2 篇 center for graph...
  • 2 篇 center for graph...
  • 2 篇 institute for ad...
  • 2 篇 mentor graphics ...
  • 2 篇 chair for comput...
  • 2 篇 dept. of mathema...
  • 1 篇 dept. of informa...
  • 1 篇 center for graph...
  • 1 篇 center of graphi...
  • 1 篇 synopsys inc 154...
  • 1 篇 center for graph...
  • 1 篇 computer graphic...
  • 1 篇 computer science...
  • 1 篇 center for algor...
  • 1 篇 depts. of mathem...

作者

  • 7 篇 barequet gill
  • 3 篇 craig gotsman
  • 3 篇 gill barequet
  • 3 篇 c. gotsman
  • 3 篇 leonidas j. guib...
  • 2 篇 vyatkina kira
  • 2 篇 a. bogomjakov
  • 2 篇 rank ernst
  • 2 篇 john hershberger
  • 2 篇 pankaj k. agarwa...
  • 2 篇 korshunova nina
  • 2 篇 wassermann benja...
  • 2 篇 kollmannsberger ...
  • 2 篇 jeff erickson
  • 2 篇 julien basch
  • 2 篇 elber gershon
  • 2 篇 kira vyatkina
  • 1 篇 amit bermano
  • 1 篇 li zhang
  • 1 篇 guibas leonidas ...

语言

  • 23 篇 英文
检索条件"机构=Center of Graphics and Geometric Computing"
23 条 记 录,以下是11-20 订阅
排序:
Formulae and Growth Rates of High-Dimensional Polycubes
收藏 引用
Electronic Notes in Discrete Mathematics 2009年 34卷 459-463页
作者: Barequet, Ronnie Barequet, Gill Rote, Günter Depts. of Mathematics and Computer Science Tel Aviv University Tel Aviv 69978 Israel Center for Graphics and Geometric Computing Dept. of Computer Science The Technion-Israel Inst. of Technology Haifa 32000 Israel Institut für Informatik Freie Universität Berlin D-14195 Berlin Takustraße 9 Germany
A d-dimensional polycube is a facet-connected set of cubes in d dimensions. Fixed polycubes are considered distinct if they differ in shape or orientation. A proper d-D polycube spans all d dimensions. In this paper w... 详细信息
来源: 评论
On Voronoi Diagrams for Lines in the Plane
On Voronoi Diagrams for Lines in the Plane
收藏 引用
International Conference on Computational Science and its Applications (ICCSA)
作者: Gill Barequet Kira Vyatkina Center of Graphics and Geometric Computing Department of Computer Science Technion-Israel Institute of Technology Haifa Israel Department of Mathematics and Mechanics Saint Petersburg State University Saint Petersburg Russia
We describe a method based on the wavefront propagation, which computes a multiplicatively weighted Voronoi diagram for a set L of n lines in the plane in O(n 2 log n) time and O(n 2 ) space. In the process, we deriv... 详细信息
来源: 评论
GPU-assisted z-field simplification
GPU-assisted z-field simplification
收藏 引用
International Symposium on 3D Data Processing Visualization and Transmission
作者: A. Bogomjakov C. Gotsman Center of Graphics and Geometric Computing Computer Science Department Technion-Israel Institute of Technology Haifa Israel
Height fields and depth maps which we collectively refer to as z-fields, usually carry a lot of redundant information and are often used in real-time applications. This is the reason why efficient methods for their si... 详细信息
来源: 评论
Explicit surface remeshing  03
Explicit surface remeshing
收藏 引用
Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing
作者: Vitaly Surazhsky Craig Gotsman Center for Graphics and Geometric Computing Technion---Israel Institute of Technology
We present a new remeshing scheme based on the idea of improving mesh quality by a series of local modifications of the mesh geometry and connectivity. Our contribution to the family of local modification techniques i...
来源: 评论
On graph partitioning, spectral analysis, and digital mesh processing
On graph partitioning, spectral analysis, and digital mesh p...
收藏 引用
International Conference on Shape Modeling and Applications
作者: C. Gotsman Center for Graphics and Geometric Computing Department of Computer Science Technion-Israel Institute of Technology Israel
Partitioning is a fundamental operation on graphs. In this paper we briefly review the basic concepts of graph partitioning and its relationship to digital mesh processing. We also elaborate on the connection between ... 详细信息
来源: 评论
A comparison of Gaussian and mean curvatures estimation methods on triangular meshes
A comparison of Gaussian and mean curvatures estimation meth...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: T. Surazhsky E. Magid O. Soldea G. Elber E. Rivlin Center for Graphics and Geometric Computing Israel Institute of Technology Haifa Israel Applied Mathematics Department Faculty of Computer Science
Estimating intrinsic geometric properties of a surface from a polygonal mesh obtained from range data is an important stage of numerous algorithms in computer and robot vision, computer graphics, geometric modeling, i... 详细信息
来源: 评论
Drawing graphs with large vertices and thick edges
收藏 引用
8th International Workshop on Algorithms and Data Structures, WADS 2003
作者: Barequet, Gill Goodrich, Michael T. Riley, Chris Center for Graphics and Geometric Computing Dept. of Computer Science The Technion-Israel Institute of Technology Haifa32000 Israel Dept. of Information and Computer Science Univ. of California IrvineCA92697 United States Center for Algorithm Engineering Dept. of Computer Science Johns Hopkins University BaltimoreMD21218 United States
We consider the problem of representing size information in the edges and vertices of a planar graph. Such information can be used, for example, to depict a network of computers and information traveling through the n... 详细信息
来源: 评论
Efficient compression and rendering of multi-resolution meshes  02
Efficient compression and rendering of multi-resolution mesh...
收藏 引用
Proceedings of the conference on Visualization '02
作者: Zachi Karni Alexander Bogomjakov Craig Gotsman Center for Graphics and Geometric Computing The Faculty of Computer Science Technion -- Israel Institute of Technology
We present a method to code the multiresolution structure of a 3D triangle mesh in a manner that allows progressive decoding and efficient rendering at a client machine. The code is based on a special ordering of the ... 详细信息
来源: 评论
Efficient compression and rendering of multi-resolution meshes
Efficient compression and rendering of multi-resolution mesh...
收藏 引用
IEEE Conference on Visualization
作者: Z. Karni A. Bogomjakov C. Gotsman Center for Graphics and Geometric Computing The Faculty of Computer Science Technion-Israel Institute of Technology Israel
We present a method to code the multiresolution structure of a 3D triangle mesh in a manner that allows progressive decoding and efficient rendering at a client machine. The code is based on a special ordering of the ... 详细信息
来源: 评论
computing the penetration depth of two convex polytopes in 3d  7th
收藏 引用
7th Scandinavian Workshop on Algorithm Theory, SWAT 2000
作者: Agarwal, Pankaj K. Guibas, Leonidas J. Har-Peled, Sariel Rabinovitch, Alexander Sharir, Micha Center for Geometric Computing Department of Computer Science Duke University Box 90129 DurhamNC27708-0129 United States Computer Graphics Laboratory Computer Science Department Stanford University StanfordCA94305 United States Synopsys Inc 154 Crane Meadow Rd Suite 300 MarlboroMA01752 United States School of Mathematical Sciences Tel Aviv University Tel Aviv69978 Israel Courant Institute of Mathematical Sciences New York University NY10012 United States
Let A and B be two convex polytopes in R3 with m and n facets, respectively. The penetration depth of A and B, denoted as π(A, B), is the minimum distance by which A has to be translated so that A and B do not inters... 详细信息
来源: 评论