咨询与建议

限定检索结果

文献类型

  • 65 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 71 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 58 篇 工学
    • 43 篇 计算机科学与技术...
    • 33 篇 软件工程
    • 10 篇 控制科学与工程
    • 10 篇 生物工程
    • 6 篇 化学工程与技术
    • 5 篇 信息与通信工程
    • 2 篇 电气工程
    • 2 篇 生物医学工程(可授...
    • 2 篇 安全科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
  • 48 篇 理学
    • 40 篇 数学
    • 15 篇 统计学(可授理学、...
    • 14 篇 系统科学
    • 10 篇 生物学
    • 7 篇 化学
    • 2 篇 地球物理学
    • 1 篇 物理学
  • 14 篇 管理学
    • 9 篇 管理科学与工程(可...
    • 6 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 医学
    • 4 篇 基础医学(可授医学...
    • 3 篇 临床医学
    • 2 篇 药学(可授医学、理...
  • 2 篇 经济学
    • 2 篇 应用经济学

主题

  • 4 篇 tensors
  • 3 篇 deep learning
  • 3 篇 spheres
  • 3 篇 machine learning
  • 3 篇 stochastic syste...
  • 2 篇 regression analy...
  • 2 篇 deep neural netw...
  • 2 篇 recommender syst...
  • 2 篇 network topology
  • 2 篇 decentralized al...
  • 2 篇 iterative method...
  • 2 篇 learning algorit...
  • 2 篇 decision trees
  • 2 篇 feature extracti...
  • 1 篇 hessian approxim...
  • 1 篇 chemical activat...
  • 1 篇 computational co...
  • 1 篇 directed network
  • 1 篇 co-clustering
  • 1 篇 stopping rule

机构

  • 22 篇 center for intel...
  • 13 篇 center for intel...
  • 6 篇 sgit ai lab stat...
  • 5 篇 center of intell...
  • 5 篇 center of intell...
  • 4 篇 college of compu...
  • 4 篇 center for moder...
  • 4 篇 school of data s...
  • 4 篇 state key labora...
  • 3 篇 international bu...
  • 3 篇 center for intel...
  • 3 篇 center for intel...
  • 3 篇 school of mathem...
  • 2 篇 department of ma...
  • 2 篇 department of co...
  • 2 篇 naveen jindal sc...
  • 2 篇 school of comput...
  • 2 篇 school of manage...
  • 2 篇 school of statis...
  • 2 篇 center for intel...

作者

  • 27 篇 lin shao-bo
  • 20 篇 wang yao
  • 16 篇 chang xiangyu
  • 11 篇 zhou ding-xuan
  • 8 篇 ye haishan
  • 8 篇 wang di
  • 7 篇 tang shaojie
  • 6 篇 liao xiuwu
  • 5 篇 haishan ye
  • 5 篇 han zhi
  • 4 篇 dai guang
  • 4 篇 yi qianxin
  • 4 篇 zhang hai
  • 4 篇 guo xiao
  • 4 篇 wang kaidong
  • 4 篇 liu jiapeng
  • 4 篇 di hao
  • 4 篇 tsang ivor w.
  • 3 篇 gao shanxing
  • 3 篇 kadziński milosz

语言

  • 66 篇 英文
  • 5 篇 其他
检索条件"机构=Center of Intelligence Decision-Making and Machine Learning"
71 条 记 录,以下是1-10 订阅
排序:
Can Gaussian Sketching Converge Faster on a Preconditioned Landscape?  41
Can Gaussian Sketching Converge Faster on a Preconditioned L...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Wang, Yilong Ye, Haishan Dai, Guang Tsang, Ivor W. Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China SGIT AI Lab State Grid Corporation of China China Singapore College of Computing and Data Science NTU Singapore
This paper focuses on the large-scale optimization which is very popular in the big data era. The gradient sketching is an important technique in the large-scale optimization. Specifically, the random coordinate desce... 详细信息
来源: 评论
Double Stochasticity Gazes Faster: Snap-Shot Decentralized Stochastic Gradient Tracking Methods  41
Double Stochasticity Gazes Faster: Snap-Shot Decentralized S...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Di, Hao Ye, Haishan Chang, Xiangyu Dai, Guang Tsang, Ivor W. Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China SGIT AI Lab State Grid Corporation of China China College of Computing and Data Science NTU Singapore Singapore
In decentralized optimization, m agents form a network and only communicate with their neighbors, which gives advantages in data ownership, privacy, and scalability. At the same time, decentralized stochastic gradient... 详细信息
来源: 评论
Lepskii Principle for Distributed Kernel Ridge Regression
arXiv
收藏 引用
arXiv 2024年
作者: Lin, Shao-Bo Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University Xi'An China
Parameter selection without communicating local data is quite challenging in distributed learning, exhibing an inconsistency between theoretical analysis and practical application of it in tackling distributively stor... 详细信息
来源: 评论
Weighted Spectral Filters for Kernel Interpolation on Spheres: Estimates of Prediction Accuracy for Noisy Data
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Xiaotong Wang, Jinxin Wang, Di Lin, Shao-Bo The Center for Intelligent Decision-Making and Machine Learning School of Management Xi’an Jiaotong University Xi’an710049 China
Spherical radial-basis-based kernel interpolation abounds in image sciences including geophysical image reconstruction, climate trends description and image rendering due to its excellent spatial localization property... 详细信息
来源: 评论
INTEGRAL OPERATOR APPROACHES FOR SCATTERED DATA FITTING ON SPHERES
arXiv
收藏 引用
arXiv 2024年
作者: Lin, Shao-Bo Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University Xi'An710049 China
This paper focuses on scattered data fitting problems on spheres. We study the approximation performance of a class of weighted spectral filter algorithms (WSFA), including Tikhonov regularization, Landweber iteration... 详细信息
来源: 评论
Optimal Decentralized Composite Optimization for Convex Functions
arXiv
收藏 引用
arXiv 2023年
作者: Ye, Haishan Chang, Xiangyu Center for Intelligent Decision-Making and Machine Learning School of Management Xi’an Jiaotong University China
In this paper, we focus on the decentralized composite optimization for convex functions. Because of advantages such as robust to the network and no communication bottle-neck in the central server, the decentralized o... 详细信息
来源: 评论
Kernel-Based Distributed Q-learning: A Scalable Reinforcement learning Approach for Dynamic Treatment Regimes
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Di Wang, Yao Lin, Shao-Bo Center for Intelligent Decision-Making and Machine Learning School of Management Xi’an Jiaotong University Xi’an China
In recent years, large amounts of electronic health records (EHRs) concerning chronic diseases have been collected to facilitate medical diagnosis. Modeling the dynamic properties of EHRs related to chronic diseases c... 详细信息
来源: 评论
Optimal Approximation and learning Rates for Deep Convolutional Neural Networks
arXiv
收藏 引用
arXiv 2023年
作者: Lin, Shao-Bo Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University Xi’an710049 China
This paper focuses on approximation and learning performance analysis for deep convolutional neural networks with zero-padding and max-pooling. We prove that, to approximate r-smooth function, the approximation rates ... 详细信息
来源: 评论
Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient  41
Double Variance Reduction: A Smoothing Trick for Composite O...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Di, Hao Ye, Haishan Zhang, Yueling Chang, Xiangyu Dai, Guang Tsang, Ivor W. Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China SGIT AI Lab State Grid Corporation of China China International Business School Beijing Foreign Studies University Beijing China Singapore College of Computing and Data Science NTU Singapore
Variance reduction techniques are designed to decrease the sampling variance, thereby accelerating convergence rates of first-order (FO) and zeroth-order (ZO) optimization methods. However, in composite optimization p... 详细信息
来源: 评论
Adaptive Parameter Selection for Kernel Ridge Regression
arXiv
收藏 引用
arXiv 2023年
作者: Lin, Shao-Bo Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University Xi'An710049 China
This paper focuses on parameter selection issues of kernel ridge regression (KRR). Due to special spectral properties of KRR, we find that delicate subdivision of the parameter interval shrinks the difference between ... 详细信息
来源: 评论