咨询与建议

限定检索结果

文献类型

  • 65 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 71 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 58 篇 工学
    • 43 篇 计算机科学与技术...
    • 33 篇 软件工程
    • 10 篇 控制科学与工程
    • 10 篇 生物工程
    • 6 篇 化学工程与技术
    • 5 篇 信息与通信工程
    • 2 篇 电气工程
    • 2 篇 生物医学工程(可授...
    • 2 篇 安全科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
  • 48 篇 理学
    • 40 篇 数学
    • 15 篇 统计学(可授理学、...
    • 14 篇 系统科学
    • 10 篇 生物学
    • 7 篇 化学
    • 2 篇 地球物理学
    • 1 篇 物理学
  • 14 篇 管理学
    • 9 篇 管理科学与工程(可...
    • 6 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 医学
    • 4 篇 基础医学(可授医学...
    • 3 篇 临床医学
    • 2 篇 药学(可授医学、理...
  • 2 篇 经济学
    • 2 篇 应用经济学

主题

  • 4 篇 tensors
  • 3 篇 deep learning
  • 3 篇 spheres
  • 3 篇 machine learning
  • 3 篇 stochastic syste...
  • 2 篇 regression analy...
  • 2 篇 deep neural netw...
  • 2 篇 recommender syst...
  • 2 篇 network topology
  • 2 篇 decentralized al...
  • 2 篇 iterative method...
  • 2 篇 learning algorit...
  • 2 篇 decision trees
  • 2 篇 feature extracti...
  • 1 篇 hessian approxim...
  • 1 篇 chemical activat...
  • 1 篇 computational co...
  • 1 篇 directed network
  • 1 篇 co-clustering
  • 1 篇 stopping rule

机构

  • 22 篇 center for intel...
  • 13 篇 center for intel...
  • 6 篇 sgit ai lab stat...
  • 5 篇 center of intell...
  • 5 篇 center of intell...
  • 4 篇 college of compu...
  • 4 篇 center for moder...
  • 4 篇 school of data s...
  • 4 篇 state key labora...
  • 3 篇 international bu...
  • 3 篇 center for intel...
  • 3 篇 center for intel...
  • 3 篇 school of mathem...
  • 2 篇 department of ma...
  • 2 篇 department of co...
  • 2 篇 naveen jindal sc...
  • 2 篇 school of comput...
  • 2 篇 school of manage...
  • 2 篇 school of statis...
  • 2 篇 center for intel...

作者

  • 27 篇 lin shao-bo
  • 20 篇 wang yao
  • 16 篇 chang xiangyu
  • 11 篇 zhou ding-xuan
  • 8 篇 ye haishan
  • 8 篇 wang di
  • 7 篇 tang shaojie
  • 6 篇 liao xiuwu
  • 5 篇 haishan ye
  • 5 篇 han zhi
  • 4 篇 dai guang
  • 4 篇 yi qianxin
  • 4 篇 zhang hai
  • 4 篇 guo xiao
  • 4 篇 wang kaidong
  • 4 篇 liu jiapeng
  • 4 篇 di hao
  • 4 篇 tsang ivor w.
  • 3 篇 gao shanxing
  • 3 篇 kadziński milosz

语言

  • 63 篇 英文
  • 8 篇 其他
检索条件"机构=Center of Intelligence Decision-Making and Machine Learning"
71 条 记 录,以下是31-40 订阅
排序:
Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient
arXiv
收藏 引用
arXiv 2024年
作者: Di, Hao Ye, Haishan Zhang, Yueling Chang, Xiangyu Dai, Guang Tsang, Ivor W. Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China SGIT AI Lab State Grid Corporation of China China International Business School Beijing Foreign Studies University Beijing China Singapore College of Computing and Data Science NTU Singapore
Variance reduction techniques are designed to decrease the sampling variance, thereby accelerating convergence rates of first-order (FO) and zeroth-order (ZO) optimization methods. However, in composite optimization p... 详细信息
来源: 评论
Lifting the Veil: Unlocking the Power of Depth in Q-learning
arXiv
收藏 引用
arXiv 2023年
作者: Lin, Shao-Bo Li, Tao Tang, Shaojie Wang, Yao Zhou, Ding-Xuan The Center for Intelligent Decision-making and Machine Learning School of Management Xi'an Jiaotong University Xi'An China The Naveen Jindal School of Management The University of Texas at Dallas RichardsonTX United States School of Mathematics and Statistics University of Sydney Sydney Australia
With the help of massive data and rich computational resources, deep Q-learning has been widely used in operations research and management science and has contributed to great success in numerous applications, includi... 详细信息
来源: 评论
Multi-consensus decentralized accelerated gradient descent
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2023年 第1期24卷 14474-14523页
作者: Haishan Ye Luo Luo Ziang Zhou Tong Zhang Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University Xi'an China School of Data Science Fudan University Shanghai China Department of Computing The Hong Kong Polytechnic University Hong Kong China Computer Science & Mathematics The Hong Kong University of Science and Technology Hong Kong China
This paper considers the decentralized convex optimization problem, which has a wide range of applications in large-scale machine learning, sensor networks, and control theory. We propose novel algorithms that achieve... 详细信息
来源: 评论
Can Gaussian sketching converge faster on a preconditioned landscape?  24
Can Gaussian sketching converge faster on a preconditioned l...
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Yilong Wang Haishan Ye Guang Dai Ivor W. Tsang Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China and SGIT AI Lab State Grid Corporation of China SGIT AI Lab State Grid Corporation of China CFAR and IHPC Agency for Science Technology and Research (A*STAR) Singapore and College of Computing and Data Science NTU Singapore
This paper focuses on the large-scale optimization which is very popular in the big data era. The gradient sketching is an important technique in the large-scale optimization. Specifically, the random coordinate desce...
来源: 评论
Low-Tubal-Rank Tensor Recovery via Factorized Gradient Descent
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Zhiyu Han, Zhi Tang, Yandong Zhao, Xi-Le Wang, Yao State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Shenyang110016 China University of Chinese Academy of Sciences Beijing100049 China University of Electronic Science and Technology of China Chengdu610051 China Center for Intelligent Decision-making and Machine Learning School of Management Xi’an Jiaotong University Xi’an710049 China
This paper considers the problem of recovering a tensor with an underlying low-tubal-rank structure from a small number of corrupted linear measurements. Traditional approaches tackling such a problem require the comp... 详细信息
来源: 评论
Integrating Response Time and Attention Duration in Bayesian Preference learning for Multiple Criteria decision Aiding
arXiv
收藏 引用
arXiv 2025年
作者: Jiang, Jiaxuan Liu, Jiapeng Kadziński, Milosz Liao, Xiuwu Dong, Jingyu Center for Intelligent Decision-Making and Machine Learning School of Management Xi’an Jiaotong University Shaanxi Xi’an710049 China Institute of Computing Science Poznan University of Technology Piotrowo 2 Poznań60-965 Poland Collaborative Innovation Center of China Pilot Reform Exploration and Assessment - Hubei Sub-Center Hubei University of Economics Hubei Wuhan430205 China School of Management Xi’an Jiaotong University Shaanxi Xi’an710049 China
We introduce a multiple criteria Bayesian preference learning framework incorporating behavioral cues for decision aiding. The framework integrates pairwise comparisons, response time, and attention duration to deepen... 详细信息
来源: 评论
Statistical estimation and inference via local SGD in federated learning
arXiv
收藏 引用
arXiv 2021年
作者: Li, Xiang Liang, Jiadong Chang, Xiangyu Zhang, Zhihua School of Mathematical Sciences Peking University China Center for Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University China
Federated learning (FL) makes a large amount of edge computing devices (e.g., mobile phones) jointly learn a global model without data sharing. In FL, data are generated in a decentralized manner with high heterogenei... 详细信息
来源: 评论
Adaptive stopping rule for kernel-based gradient descent algorithms
arXiv
收藏 引用
arXiv 2020年
作者: Chang, Xiangyu Lin, Shao-Bo Center of Intelligence Decision-Making and Machine Learning School of Management Xi'an Jiaotong University Xi'an China
In this paper, we propose an adaptive stopping rule for kernel-based gradient descent (KGD) algorithms. We introduce the empirical effective dimension to quantify the increments of iterations in KGD and derive an impl... 详细信息
来源: 评论
Efficient Over-parameterized Matrix Sensing from Noisy Measurements via Alternating Preconditioned Gradient Descent
arXiv
收藏 引用
arXiv 2025年
作者: Liu, Zhiyu Han, Zhi Tang, Yandong Zhang, Hai Tang, Shaojie Wang, Yao State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Shenyang110016 China University of Chinese Academy of Sciences Beijing100049 China Department of Statistics Northwest University Xi’an710000 China Department of Management Science and Systems State University of New York Buffalo United States Center for Intelligent Decision-making and Machine Learning School of Management Xi’an Jiaotong University Xi’an710049 China
We consider the noisy matrix sensing problem in the over-parameterization setting, where the estimated rank r is larger than the true rank r★. Specifically, our main objective is to recover a matrix X★ ∈ Rn1×n... 详细信息
来源: 评论
Deep Convolutional Neural Networks with Zero-Padding: Feature Extraction and learning
arXiv
收藏 引用
arXiv 2023年
作者: Han, Zhi Liu, Baichen Lin, Shao-Bo Zhou, Ding-Xuan State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Shenyang China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang China Center of Intelligent Decision-Making and Machine Learning School of Management Xi’an Jiaotong University Xi’an China School of Mathematics and Statistics University of Sydney SydneyNSW2006 Australia
This paper studies the performance of deep convolutional neural networks (DCNNs) with zero-padding in feature extraction and learning. After verifying the roles of zero-padding in enabling translation-equivalence, and... 详细信息
来源: 评论