咨询与建议

限定检索结果

文献类型

  • 145 篇 期刊文献
  • 85 篇 会议
  • 1 册 图书

馆藏范围

  • 231 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 149 篇 工学
    • 106 篇 计算机科学与技术...
    • 87 篇 软件工程
    • 28 篇 生物工程
    • 26 篇 生物医学工程(可授...
    • 24 篇 信息与通信工程
    • 21 篇 控制科学与工程
    • 17 篇 电气工程
    • 16 篇 光学工程
    • 11 篇 电子科学与技术(可...
    • 7 篇 机械工程
    • 7 篇 化学工程与技术
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 5 篇 仪器科学与技术
    • 5 篇 交通运输工程
  • 99 篇 理学
    • 55 篇 数学
    • 32 篇 物理学
    • 32 篇 生物学
    • 31 篇 统计学(可授理学、...
    • 13 篇 系统科学
    • 9 篇 化学
    • 6 篇 地球物理学
  • 34 篇 管理学
    • 22 篇 图书情报与档案管...
    • 15 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 19 篇 医学
    • 17 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 9 篇 公共卫生与预防医...
    • 6 篇 药学(可授医学、理...
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 教育学
  • 4 篇 农学
  • 2 篇 法学
  • 1 篇 哲学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 11 篇 machine learning
  • 10 篇 reinforcement le...
  • 8 篇 accuracy
  • 7 篇 deep learning
  • 5 篇 contrastive lear...
  • 5 篇 predictive model...
  • 4 篇 cognition
  • 4 篇 image segmentati...
  • 4 篇 data models
  • 4 篇 training
  • 3 篇 object detection
  • 3 篇 transformers
  • 3 篇 neural networks
  • 3 篇 data engineering
  • 3 篇 semantics
  • 3 篇 benchmarking
  • 3 篇 stochastic syste...
  • 3 篇 biomedical imagi...
  • 3 篇 artificial intel...
  • 3 篇 synchronization

机构

  • 24 篇 center for data ...
  • 7 篇 guangdong key la...
  • 7 篇 center for machi...
  • 7 篇 college of compu...
  • 7 篇 peng cheng labor...
  • 7 篇 national key lab...
  • 6 篇 center for data ...
  • 6 篇 key laboratory o...
  • 6 篇 yizhun medical a...
  • 6 篇 school of data a...
  • 6 篇 the state key la...
  • 6 篇 dortmund data sc...
  • 6 篇 school of comput...
  • 6 篇 key laboratory o...
  • 5 篇 software college...
  • 5 篇 tu dortmund univ...
  • 5 篇 school of mathem...
  • 5 篇 college of compu...
  • 4 篇 collaborative in...
  • 4 篇 informatics inst...

作者

  • 17 篇 wang liwei
  • 7 篇 wang dong
  • 7 篇 triantafyllopoul...
  • 7 篇 schuller björn w...
  • 6 篇 zhao ziwei
  • 6 篇 liwei wang
  • 5 篇 zheng wei-shi
  • 5 篇 bakas spyridon
  • 5 篇 zhong han
  • 4 篇 yin jianwei
  • 4 篇 müller arthur
  • 4 篇 li hongwei bran
  • 4 篇 tsangko iosif
  • 4 篇 yu hong-xing
  • 4 篇 andreas triantaf...
  • 4 篇 linguraru marius...
  • 4 篇 di he
  • 4 篇 munteanu alexand...
  • 4 篇 müller emmanuel
  • 4 篇 he di

语言

  • 189 篇 英文
  • 41 篇 其他
检索条件"机构=Center of Machine Intelligence and Data Science"
231 条 记 录,以下是61-70 订阅
排序:
DUO: Diverse, Uncertain, On-Policy Query Generation and Selection for Reinforcement Learning from Human Feedback  39
DUO: Diverse, Uncertain, On-Policy Query Generation and Sele...
收藏 引用
39th Annual AAAI Conference on Artificial intelligence, AAAI 2025
作者: Feng, Xuening Jiang, Zhaohui Kaufmann, Timo Xu, Puchen Hüllermeier, Eyke Weng, Paul Zhu, Yifei UM-SJTU Joint Institute Shanghai Jiao Tong University Shanghai China Institute for Informatics LMU Munich Munich Germany Munich Center of Machine Learning Munich Germany German Research Center for Artificial Intelligence Germany Data Science Research Center Duke Kunshan University Kunshan China
Defining a reward function is usually a challenging but critical task for the system designer in reinforcement learning, especially when specifying complex behaviors. Reinforcement learning from human feedback (RLHF) ... 详细信息
来源: 评论
Spiking Neural Networks for Temporal Processing: Status Quo and Future Prospects
arXiv
收藏 引用
arXiv 2025年
作者: Ma, Chenxiang Chen, Xinyi Li, Yanchen Yang, Qu Wu, Yujie Li, Guoqi Pan, Gang Tang, Huajin Tan, Kay Chen Wu, Jibin Department of Data Science and Artificial Intelligence The Hong Kong Polytechnic University Hong Kong Department of Computing The Hong Kong Polytechnic University Hong Kong Department of Electrical and Computer Engineering National University of Singapore 119077 Singapore Institute of Automation Chinese Academy of Sciences Beijing100045 China State Key Laboratory of Brain-Machine Intelligence College of Computer Science and Technology MOE Frontier Science Center for Brain Science and Brain-Machine Integration Zhejiang University Hangzhou310027 China
Temporal processing is fundamental for both biological and artificial intelligence systems, as it enables the comprehension of dynamic environments and facilitates timely responses. Spiking Neural Networks (SNNs) exce... 详细信息
来源: 评论
Revisiting Common Randomness, No-signaling and Information Structure in Decentralized Control
arXiv
收藏 引用
arXiv 2024年
作者: Dhingra, Apurva Kulkarni, Ankur A. Center of Machine Intelligence and Data Science CMInDS Indian Institute of Technology Bombay Mumbai400076 India Systems and Control Engineering Indian Institute of Technology Bombay Mumbai400076 India Center of excellence in Quantum Information Computing Science and Technology QuICST Indian Institute of Technology Bombay Mumbai400076 India
This work revisits the no-signaling condition for decentralized information structures. We produce examples to show that within the no-signaling polytope exist strategies that cannot be achieved by passive common rand... 详细信息
来源: 评论
RETIA: Relation-Entity Twin-Interact Aggregation for Temporal Knowledge Graph Extrapolation
RETIA: Relation-Entity Twin-Interact Aggregation for Tempora...
收藏 引用
International Conference on data Engineering
作者: Kangzheng Liu Feng Zhao Guandong Xu Xianzhi Wang Hai Jin National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China Data Science and Machine Intelligence Lab University of Technology Sydney Sydney Australia
Temporal knowledge graph (TKG) extrapolation aims to predict future unknown events (facts) based on historical information, and has attracted considerable attention due to its great practical significance. Accurate re...
来源: 评论
Mining Negative Temporal Contexts For False Positive Suppression In Real-Time Ultrasound Lesion Detection
arXiv
收藏 引用
arXiv 2023年
作者: Yu, Haojun Li, Youcheng Wu, QuanLin Zhao, Ziwei Chen, Dengbo Wang, Dong Wang, Liwei National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University Beijing China Center of Data Science Peking University Beijing China Center for Machine Learning Research Peking University Beijing China Yizhun Medical AI Co. Ltd Beijing China Guangdong China
During ultrasonic scanning processes, real-time lesion detection can assist radiologists in accurate cancer diagnosis. However, this essential task remains challenging and underexplored. General-purpose real-time obje... 详细信息
来源: 评论
Advancing OCT-Based Retinal Disease Classification with XLSTM: A Framework for Variable-Length Volume Processing
Advancing OCT-Based Retinal Disease Classification with XLST...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Emese Sükei Marzieh Oghbaie Ursula Schmidt-Erfurth Günter Klambauer Hrvoje Bogunović Department of Ophthalmology OPTIMA Lab Medical University of Vienna Austria Institute of Artificial Intelligence Medical University of Vienna Center for Medical Data Science Austria LIT AI Lab Institute for Machine Learning Johannes Kepler University Austria NXAI GmbH Linz Austria
This paper presents a method for retinal disease classification using optical coherence tomography (OCT) scans, specifically addressing the challenge of variable B-scan density across dataset volumes. Deep learning me... 详细信息
来源: 评论
An Effective Meaningful Way to Evaluate Survival Models
arXiv
收藏 引用
arXiv 2023年
作者: Qi, Shi-Ang Kumar, Neeraj Farrokh, Mahtab Sun, Weijie Kuan, Li-Hao Ranganath, Rajesh Henao, Ricardo Greiner, Russell Computing Science University of Alberta Edmonton Canada Alberta Machine Intelligence Institute Edmonton Canada Computer Science & Center for Data Science New York University New York City United States Biostatistics & Bioinformatics Duke University Durham United States
One straightforward metric to evaluate a survival prediction model is based on the Mean Absolute Error (MAE) – the average of the absolute difference between the time predicted by the model and the true event time, o... 详细信息
来源: 评论
Swarm-Net: Firmware Attestation in IoT Swarms using Graph Neural Networks and Volatile Memory
arXiv
收藏 引用
arXiv 2024年
作者: Kohli, Varun Kohli, Bhavya Aman, Muhammad Naveed Sikdar, Biplab The Department of Electrical and Computer Engineering National University of Singapore Singapore117417 Singapore The Center for Machine Intelligence and Data Science Indian Institute of Technology Bombay Mumbai400076 India The School of Computing University of Nebraska-Lincoln LincolnNE68588 United States
The Internet of Things (IoT) is a network of billions of interconnected, primarily low-end embedded devices. Despite large-scale deployment, studies have highlighted critical security concerns in IoT networks, many of... 详细信息
来源: 评论
An Empirical Examination of Balancing Strategy for Counterfactual Estimation on Time Series
arXiv
收藏 引用
arXiv 2024年
作者: Huang, Qiang Meng, Chuizheng Cao, Defu Huang, Biwei Chang, Yi Liu, Yan School of Artificial Intelligence Jilin University Jilin Changchun China International Center of Future Science Jilin University Jilin Changchun China Department of Computer Science University of Southern California California Los Angeles United States Halicioğlu Data Science Institute University of California San Diego San DiegoCA United States Engineering Research Center of Knowledge-Driven Human-Machine Intelligence MOE Jilin Changchun China
Counterfactual estimation from observations represents a critical endeavor in numerous application fields, such as healthcare and finance, with the primary challenge being the mitigation of treatment bias. The balanci... 详细信息
来源: 评论
Empowering LLMs with Logical Reasoning: A Comprehensive Survey
arXiv
收藏 引用
arXiv 2025年
作者: Cheng, Fengxiang Li, Haoxuan Liu, Fenrong van Rooij, Robert Zhang, Kun Lin, Zhouchen Institute for Logic Language and Computation University of Amsterdam Netherlands Center for Data Science Peking University China Machine Learning Department MBZUAI Department of Philosophy Tsinghua University China Department of Philosophy CMU United States Institute for Artificial Intelligence Peking University China Peng Cheng Laboratory China National Key Lab of General AI School of Intelligence Science and Technology Peking University China
Large language models (LLMs) have achieved remarkable successes on various natural language tasks. However, recent studies have found that there are still significant challenges to the logical reasoning abilities of L... 详细信息
来源: 评论