咨询与建议

限定检索结果

文献类型

  • 73 篇 期刊文献
  • 45 篇 会议
  • 2 册 图书

馆藏范围

  • 120 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 79 篇 工学
    • 59 篇 计算机科学与技术...
    • 52 篇 软件工程
    • 24 篇 控制科学与工程
    • 15 篇 信息与通信工程
    • 13 篇 生物医学工程(可授...
    • 13 篇 生物工程
    • 6 篇 光学工程
    • 5 篇 安全科学与工程
    • 4 篇 机械工程
    • 4 篇 电气工程
    • 4 篇 化学工程与技术
    • 3 篇 仪器科学与技术
    • 3 篇 交通运输工程
    • 3 篇 网络空间安全
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
  • 45 篇 理学
    • 28 篇 数学
    • 18 篇 统计学(可授理学、...
    • 14 篇 生物学
    • 9 篇 系统科学
    • 6 篇 物理学
    • 4 篇 化学
    • 2 篇 地球物理学
    • 2 篇 地质学
  • 13 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 7 篇 医学
    • 5 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 2 篇 教育学
    • 2 篇 教育学
  • 1 篇 法学
  • 1 篇 农学

主题

  • 8 篇 machine learning
  • 5 篇 semantics
  • 3 篇 object detection
  • 3 篇 three-dimensiona...
  • 3 篇 image segmentati...
  • 3 篇 neural networks
  • 3 篇 robot sensing sy...
  • 3 篇 human robot inte...
  • 3 篇 probabilistic lo...
  • 3 篇 stochastic syste...
  • 3 篇 pipelines
  • 3 篇 laser radar
  • 3 篇 training
  • 2 篇 reinforcement le...
  • 2 篇 semantic segment...
  • 2 篇 deep learning
  • 2 篇 problem solving
  • 2 篇 digital elevatio...
  • 2 篇 object segmentat...
  • 2 篇 market research

机构

  • 8 篇 max planck insti...
  • 6 篇 fraunhofer cente...
  • 6 篇 department empir...
  • 4 篇 munich center fo...
  • 4 篇 fraunhofer insti...
  • 4 篇 mpi for intellig...
  • 4 篇 machine learning...
  • 4 篇 institute of mac...
  • 4 篇 tübingen ai cent...
  • 3 篇 university of sc...
  • 3 篇 bosch center for...
  • 3 篇 machine learning...
  • 3 篇 helmholtz ai mun...
  • 3 篇 school of cybers...
  • 3 篇 max planck insti...
  • 3 篇 tu dortmund
  • 3 篇 pruna ai munich
  • 3 篇 machine learning...
  • 3 篇 fraunhofer insti...
  • 3 篇 department of sy...

作者

  • 20 篇 behnke sven
  • 14 篇 macke jakob h.
  • 7 篇 sven behnke
  • 6 篇 memmesheimer rap...
  • 6 篇 gao richard
  • 5 篇 vetter julius
  • 5 篇 schröder corneli...
  • 5 篇 houben sebastian
  • 5 篇 jakob h. macke
  • 4 篇 schölkopf bernha...
  • 4 篇 weichert dorina
  • 4 篇 kruzhkov evgenii
  • 4 篇 deistler michael
  • 4 篇 wang yao
  • 4 篇 kister alexander
  • 4 篇 pei felix
  • 4 篇 pätzold bastian
  • 4 篇 gloeckler manuel
  • 4 篇 moss guy
  • 4 篇 zhang lijun

语言

  • 104 篇 英文
  • 16 篇 其他
检索条件"机构=Center of Machine Learning and Intelligent Systems"
120 条 记 录,以下是1-10 订阅
排序:
Person Segmentation and Action Classification for Multi-Channel Hemisphere Field of View LiDAR Sensors
Person Segmentation and Action Classification for Multi-Chan...
收藏 引用
2025 IEEE/SICE International Symposium on System Integration, SII 2025
作者: Seliunina, Svetlana Otelepko, Artem Memmesheimer, Raphael Behnke, Sven University of Bonn Autonomous Intelligent Systems Group Computer Science Institute VI - Intelligent Systems and Robotics Lamarr Institute for Machine Learning and Artificial Intelligence Center for Robotics Germany
Robots need to perceive persons in their surroundings for safety and to interact with them. In this paper, we present a person segmentation and action classification approach that operates on 3D scans of hemisphere fi... 详细信息
来源: 评论
A Comparison of Prompt Engineering Techniques for Task Planning and Execution in Service Robotics  23
A Comparison of Prompt Engineering Techniques for Task Plann...
收藏 引用
23rd IEEE-RAS International Conference on Humanoid Robots, Humanoids 2024
作者: Bode, Jonas Pätzold, Bastian Memmesheimer, Raphael Behnke, Sven Computer Science Institute Vi - Intelligent Systems and Robotics Lamarr Institute for Machine Learning and Artificial Intelligence Center for Robotics University of Bonn Autonomous Intelligent Systems group Germany
Recent advances in Large Language Models (LLMs) have been instrumental in autonomous robot control and human-robot interaction by leveraging their vast general knowledge and capabilities to understand and reason acros... 详细信息
来源: 评论
Sourcerer: Sample-based Maximum Entropy Source Distribution Estimation  38
Sourcerer: Sample-based Maximum Entropy Source Distribution ...
收藏 引用
38th Conference on Neural Information Processing systems, NeurIPS 2024
作者: Vetter, Julius Schröder, Cornelius Moss, Guy Gao, Richard Macke, Jakob H. Machine Learning in Science Excellence Cluster Machine Learning University of Tübingen Germany Tübingen AI Center Germany Department Empirical Inference Max Planck Institute for Intelligent Systems Tübingen Germany
Scientific modeling applications often require estimating a distribution of parameters consistent with a dataset of observations-an inference task also known as source distribution estimation. This problem can be ill-...
来源: 评论
RoboCup@Home 2024 OPL Winner NimbRo: Anthropomorphic Service Robots Using Foundation Models for Perception and Planning
RoboCup@Home 2024 OPL Winner NimbRo: Anthropomorphic Service...
收藏 引用
27th RoboCup International Symposium, 2024
作者: Memmesheimer, Raphael Nogga, Jan Pätzold, Bastian Kruzhkov, Evgenii Bultmann, Simon Schreiber, Michael Bode, Jonas Karacora, Bertan Park, Juhui Savinykh, Alena Behnke, Sven Autonomous Intelligent Systems Computer Science Institute VI Lamarr Institute for Machine Learning and Artificial Intelligence and Center for Robotics University of Bonn Bonn Germany
We present the approaches and contributions of the winning team NimbRo@Home at the RoboCup@Home 2024 competition in the Open Platform League held in Eindhoven, NL. Further, we describe our hardware setup and give an o... 详细信息
来源: 评论
Latent Diffusion for Neural Spiking Data  38
Latent Diffusion for Neural Spiking Data
收藏 引用
38th Conference on Neural Information Processing systems, NeurIPS 2024
作者: Kapoor, Jaivardhan Schulz, Auguste Vetter, Julius Pei, Felix Gao, Richard Macke, Jakob H. Machine Learning in Science University of Tübingen & Tübingen AI Center Tübingen Germany Department Empirical Inference Max Planck Institute for Intelligent Systems Tübingen Germany
Modern datasets in neuroscience enable unprecedented inquiries into the relationship between complex behaviors and the activity of many simultaneously recorded neurons. While latent variable models can successfully ex...
来源: 评论
LEAP-VO: Long-term Effective Any Point Tracking for Visual Odometry
LEAP-VO: Long-term Effective Any Point Tracking for Visual O...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Weirong Chen Le Chen Rui Wang Marc Pollefeys TU Munich Munich Center for Machine Learning MPI for Intelligent Systems Microsoft
Visual odometry estimates the motion of a moving cam-era based on visual input. Existing methods, mostly focusing on two-view point tracking, often ignore the rich tempo-ral context in the image sequence, thereby over... 详细信息
来源: 评论
Object-Centric Image to Video Generation with Language Guidance
arXiv
收藏 引用
arXiv 2025年
作者: Villar-Corrales, Angel Plepi, Gjergj Behnke, Sven Autonomous Intelligent Systems Computer Science Institute VI – Intelligent Systems and Robotics Center for Robotics Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Accurate and flexible world models are crucial for autonomous systems to understand their environment and predict future events. Object-centric models, with structured latent spaces, have shown promise in modeling obj... 详细信息
来源: 评论
Towards Conscious Service Robots
arXiv
收藏 引用
arXiv 2025年
作者: Behnke, Sven Autonomous Intelligent Systems Computer Science Institute VI – Intelligent Systems and Robotics Center for Robotics the Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Deep learning’s success in perception, natural language processing, etc. inspires hopes for advancements in autonomous robotics. However, real-world robotics face challenges like variability, high-dimensional state s... 详细信息
来源: 评论
Person Segmentation and Action Classification for Multi-Channel Hemisphere Field of View LiDAR Sensors
Person Segmentation and Action Classification for Multi-Chan...
收藏 引用
IEEE/SICE International Symposium on System Integration
作者: Svetlana Seliunina Artem Otelepko Raphael Memmesheimer Sven Behnke Autonomous Intelligent Systems Group Computer Science Institute VI – Intelligent Systems and Robotics Lamarr Institute for Machine Learning and Artificial Intelligence and Center for Robotics University of Bonn
Robots need to perceive persons in their surroundings for safety and to interact with them. In this paper, we present a person segmentation and action classification approach that operates on 3D scans of hemisphere fi... 详细信息
来源: 评论
Sourcerer: sample-based maximum entropy source distribution estimation  24
Sourcerer: sample-based maximum entropy source distribution ...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing systems
作者: Julius Vetter Guy Moss Cornelius Schröder Richard Gao Jakob H. Macke Machine Learning in Science Excellence Cluster Machine Learning University of Tübingen and Tübingen AI Center Machine Learning in Science Excellence Cluster Machine Learning University of Tübingen and Tübingen AI Center and Department Empirical Inference Max Planck Institute for Intelligent Systems Tübingen Germany
Scientific modeling applications often require estimating a distribution of parameters consistent with a dataset of observations—an inference task also known as source distribution estimation. This problem can be ill...
来源: 评论