咨询与建议

限定检索结果

文献类型

  • 73 篇 期刊文献
  • 45 篇 会议
  • 2 册 图书

馆藏范围

  • 120 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 79 篇 工学
    • 59 篇 计算机科学与技术...
    • 52 篇 软件工程
    • 24 篇 控制科学与工程
    • 15 篇 信息与通信工程
    • 13 篇 生物医学工程(可授...
    • 13 篇 生物工程
    • 6 篇 光学工程
    • 5 篇 安全科学与工程
    • 4 篇 机械工程
    • 4 篇 电气工程
    • 4 篇 化学工程与技术
    • 3 篇 仪器科学与技术
    • 3 篇 交通运输工程
    • 3 篇 网络空间安全
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
  • 45 篇 理学
    • 28 篇 数学
    • 18 篇 统计学(可授理学、...
    • 14 篇 生物学
    • 9 篇 系统科学
    • 6 篇 物理学
    • 4 篇 化学
    • 2 篇 地球物理学
    • 2 篇 地质学
  • 13 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 7 篇 医学
    • 5 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 2 篇 教育学
    • 2 篇 教育学
  • 1 篇 法学
  • 1 篇 农学

主题

  • 8 篇 machine learning
  • 5 篇 semantics
  • 3 篇 object detection
  • 3 篇 three-dimensiona...
  • 3 篇 image segmentati...
  • 3 篇 neural networks
  • 3 篇 robot sensing sy...
  • 3 篇 human robot inte...
  • 3 篇 probabilistic lo...
  • 3 篇 stochastic syste...
  • 3 篇 pipelines
  • 3 篇 laser radar
  • 3 篇 training
  • 2 篇 reinforcement le...
  • 2 篇 semantic segment...
  • 2 篇 deep learning
  • 2 篇 problem solving
  • 2 篇 digital elevatio...
  • 2 篇 object segmentat...
  • 2 篇 market research

机构

  • 8 篇 max planck insti...
  • 6 篇 fraunhofer cente...
  • 6 篇 department empir...
  • 4 篇 munich center fo...
  • 4 篇 fraunhofer insti...
  • 4 篇 mpi for intellig...
  • 4 篇 machine learning...
  • 4 篇 institute of mac...
  • 4 篇 tübingen ai cent...
  • 3 篇 university of sc...
  • 3 篇 bosch center for...
  • 3 篇 machine learning...
  • 3 篇 helmholtz ai mun...
  • 3 篇 school of cybers...
  • 3 篇 max planck insti...
  • 3 篇 tu dortmund
  • 3 篇 pruna ai munich
  • 3 篇 machine learning...
  • 3 篇 fraunhofer insti...
  • 3 篇 department of sy...

作者

  • 20 篇 behnke sven
  • 14 篇 macke jakob h.
  • 7 篇 sven behnke
  • 6 篇 memmesheimer rap...
  • 6 篇 gao richard
  • 5 篇 vetter julius
  • 5 篇 schröder corneli...
  • 5 篇 houben sebastian
  • 5 篇 jakob h. macke
  • 4 篇 schölkopf bernha...
  • 4 篇 weichert dorina
  • 4 篇 kruzhkov evgenii
  • 4 篇 deistler michael
  • 4 篇 wang yao
  • 4 篇 kister alexander
  • 4 篇 pei felix
  • 4 篇 pätzold bastian
  • 4 篇 gloeckler manuel
  • 4 篇 moss guy
  • 4 篇 zhang lijun

语言

  • 96 篇 英文
  • 24 篇 其他
检索条件"机构=Center of Machine Learning and Intelligent Systems"
120 条 记 录,以下是91-100 订阅
排序:
System Misuse Detection via Informed Behavior Clustering and Modeling
arXiv
收藏 引用
arXiv 2019年
作者: Adilova, Linara Natious, Livin Chen, Siming Thonnardz, Olivier Kampyx, Michael Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS Fraunhofer Center for Machine Learning Department of Amadeus University of Bonn
One of the main tasks of cybersecurity is recognizing malicious interactions with an arbitrary system. Currently, the logging information from each interaction can be collected in almost unrestricted amounts, but iden... 详细信息
来源: 评论
License Plate Detection and Recognition Technology for Complex Real Scenarios  16th
License Plate Detection and Recognition Technology for Compl...
收藏 引用
16th International Conference on intelligent Computing, ICIC 2020
作者: Li, Zhipeng Wang, Fei Taleb, Hamdan Yuan, Changan Qin, Xiao Wu, Hongjie Zhao, Xingming Zhang, Lijun Institute of Machine Learning and Systems Biology School of Electronics and Information Engineering Tongji University Shanghai201804 China Guangxi Academy of Science Nanning530025 China School of Computer and Information Engineering Nanning Normal University Nanning530299 China School of Electronic and Information Engineering Suzhou University of Science and Technology Suzhou215009 China Fudan University Shanghai200433 China Collaborative Innovation Center of Intelligent New Energy Vehicle and School of Automotive Studies Tongji University Shanghai201804 China
At present, Automatic License Plate Recognition(ALPR) technology has been widely used in residential parking, high-speed intersection toll stations, roadside illegal parking, smart transportation and other fields. Alt... 详细信息
来源: 评论
Trust-region variational inference with gaussian mixture models
arXiv
收藏 引用
arXiv 2019年
作者: Arenz, Oleg Zhong, Mingjun Neumann, Gerhard Intelligent Autonomous Systems TU Darmstadt Machine Learning Group University of Lincoln Bosch Center for Artificial Intelligence Renningen Germany Center for Autonomous Systems University of Lincoln
Many methods for machine learning rely on approximate inference from in- tractable probability distributions. Variational inference approximates such distri- butions by tractable models that can be subsequently used f... 详细信息
来源: 评论
Accurately predicting anticancer peptide using an ensemble of heterogeneously trained classifiers
收藏 引用
Informatics in Medicine Unlocked 2023年 42卷
作者: Azim, Sayed Mehedi Sabab, Noor Hossain Nuri Noshadi, Iman Alinejad-Rokny, Hamid Sharma, Alok Shatabda, Swakkhar Dehzangi, Iman Center for Computational and Integrative Biology Rutgers University Camden 08102 NJ United States Department of Computer Science and Engineering United International University Plot 2 United City Madani Avenue BaddaDhaka 1212 Bangladesh Department of Bioengineering University of California Riverside 92507 CA United States BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering The University of New South Wales (UNSW Sydney) Sydney NSW 2052 Australia UNSW Data Science Hub UNSW Sydney Sydney NSW 2052 Australia Health Data Analytics Program AI-enabled Processes Research Centre Macquarie University Sydney 2109 Australia Institute for Integrated and Intelligent Systems Griffith University Brisbane Australia Laboratory for Medical Science Mathematics RIKEN Center for Integrative Medical Sciences Yokohama 230-0045 Japan Department of Computer Science Rutgers University Camden 08102 NJ United States
The use of therapeutic peptides for the treatment of cancer has received tremendous attention in recent years. Anticancer peptides (ACPs) are considered new anticancer drugs which have several advantages over chemistr... 详细信息
来源: 评论
Trajectory-based off-policy deep reinforcement learning
arXiv
收藏 引用
arXiv 2019年
作者: Doerr, Andreas Volpp, Michael Toussaint, Marc Trimpe, Sebastian Daniel, Christian Bosch Center for Artificial Intelligence Renningen Germany Max Planck Institute for Intelligent Systems Stuttgart/Tubingen Germany Machine Learning and Robotics Lab University of Stuttgart Germany
Policy gradient methods are powerful reinforcement learning algorithms and have been demonstrated to solve many complex tasks. However, these methods are also data-inefficient, afflicted with high variance gradient es... 详细信息
来源: 评论
Plant Leaf Recognition Based on Conditional Generative Adversarial Nets  15th
Plant Leaf Recognition Based on Conditional Generative Adver...
收藏 引用
15th International Conference on intelligent Computing, ICIC 2019
作者: Jiao, Zhihao Zhang, Lijun Yuan, Chang-An Qin, Xiao Shang, Li Institute of Machine Learning and Systems Biology School of Electronics and Information Engineering Tongji University Shanghai China Collaborative Innovation Center of Intelligent New Energy Vehicle Shanghai China School of Automotive Studies Tongji University Shanghai China Science Computing and Intelligent Information Processing of GuangXi Higher Education Key Laboratory Nanning Normal University NanningGuangxi China Department of Communication Technology College of Electronic Information Engineering Suzhou Vocational University SuzhouJiangsu215104 China
Plants play an important role in human life, Identifying and protecting plants has far-reaching implications for the sustainable development of the ecological environment. Plant leaves can often reflect important char... 详细信息
来源: 评论
The incomplete rosetta stone problem: Identifiability results for multi-view nonlinear ICA
arXiv
收藏 引用
arXiv 2019年
作者: Gresele, Luigi Rubenstein, Paul K. Mehrjou, Arash Locatello, Francesco Schölkopf, Bernhard Empirical Inference Max Planck Institute for Intelligent Systems Tübingen Germany Max Planck Institute for Biological Cybernetics Tübingen Germany Machine Learning Group University of Cambridge United Kingdom Max Planck ETH Center for Learning Systems Zürich Switzerland BMI Dept. for Computer Science ETH Zürich Switzerland
We consider the problem of recovering a common latent source with independent components from multiple views. This applies to settings in which a variable is measured with multiple experimental modalities, and where t... 详细信息
来源: 评论
Random Occlusion Recovery with Noise Channel for Person Re-identification  16th
Random Occlusion Recovery with Noise Channel for Person Re-i...
收藏 引用
16th International Conference on intelligent Computing, ICIC 2020
作者: Zhang, Kun Wu, Di Yuan, Changan Qin, Xiao Wu, Hongjie Zhao, Xingming Zhang, Lijun Du, Yuchuan Wang, Hanli Institute of Machine Learning and Systems Biology School of Electronics and Information Engineering Tongji University Shanghai China Guangxi Academy of Science Nanning530025 China School of Computer and Information Engineering Nanning Normal University Nanning530299 China School of Computer Science and Technology Soochow University Suzhou215006 China School of Electronic and Information Engineering Suzhou University of Science and Technology Suzhou215009 China Fudan University Shanghai200433 China Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence Ministry of Education Shanghai China Collaborative Innovation Center of Intelligent New Energy Vehicle and School of Automotive Studies Tongji University Shanghai201804 China The Key Laboratory of Road and Traffic Engineering of the Ministry of Education Department of Transportation Engineering Tongji University Shanghai201804 China Department of Computer Science and Technology the Key Laboratory of Embedded System and Service Computing and Shanghai Institute of Intelligent Science and Technology Tongji University Shanghai200092 China
Person re-identification, as the basic task of a multi-camera surveillance system, plays an important role in a variety of surveillance applications. However, the current mainstream person re-identification model base... 详细信息
来源: 评论
Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Yingying Jun, A. Liu, Zhiwei Sun, Rui Qian, Liujia Payne, Samuel H. Bittremieux, Wout Ralser, Markus Li, Chen Chen, Yi Dong, Zhen Perez-Riverol, Yasset Khan, Asif Sander, Chris Aebersold, Ruedi Vizcaíno, Juan Antonio Krieger, Jonathan R. Yao, Jianhua Wen, Han Zhang, Linfeng Zhu, Yunping Xuan, Yue Sun, Benjamin Boyang Qiao, Liang Hermjakob, Henning Tang, Haixu Gao, Huanhuan Deng, Yamin Zhong, Qing Chang, Cheng Bandeira, Nuno Li, Ming Weinan, E. Sun, Siqi Yang, Yuedong Omenn, Gilbert S. Zhang, Yue Xu, Ping Fu, Yan Liu, Xiaowen Overall, Christopher M. Wang, Yu Deutsch, Eric W. Chen, Luonan Cox, Jürgen Demichev, Vadim He, Fuchu Huang, Jiaxing Jin, Huilin Liu, Chao Li, Nan Luan, Zhongzhi Song, Jiangning Yu, Kaicheng Wan, Wanggen Wang, Tai Zhang, Kang Zhang, Le Bell, Peter A. Mann, Matthias Zhang, Bing Guo, Tiannan Affiliated Hangzhou First People’s Hospital State Key Laboratory of Medical Proteomics School of Medicine Westlake University Zhejiang Province Hangzhou China Westlake Center for Intelligent Proteomics Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Province Hangzhou China Biology Department Brigham Young University ProvoUT84602 United States Department of Computer Science University of Antwerp Antwerp2020 Belgium Department of Biochemistry CharitéUniversitätsmedizin Berlin Berlin Germany Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology Monash University MelbourneVICVIC 3800 Australia Wellcome Genome Campus Hinxton CambridgeCB10 1SD United Kingdom Harvard Medical School Ludwig Center at Harvard United States Harvard Medical School Broad Institute Ludwig Center at Harvard Dana-Farber Cancer Institute United States Department of Biology Institute of Molecular Systems Biology ETH Zürich Zürich Switzerland Bruker Ltd. MiltonONL9T 6P4 Canada AI for Life Sciences Lab Tencent Shenzhen518057 China State Key Laboratory of Medical Proteomics AI for Science Institute Beijing100080 China Beijing Institute of Lifeomics Beijing102206 China Thermo Fisher Scientific GmbH Hanna-Kunath Str. 11 Bremen28199 Germany Informatics and Predictive Sciences Research Bristol Myers Squibb United States Department of Chemistry Fudan University Songhu Road 2005 Shanghai200438 China Department of Computer Science Luddy School of Informatics Computing and Engineering Indiana University IN47408 United States ProCan® Children’s Medical Research Institute Faculty of Medicine and Health The University of Sydney WestmeadNSW Australia La Jolla CA United States Central China Institute of Artificial Intelligence University of Waterloo Canada AI for Science Institute Center for Machine Learning Research School of Mathematical Sciences Peking University China Research Institute of Intelligent Complex Systems Fudan U
Artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI technique... 详细信息
来源: 评论
Analytical probabilistic modeling of dose-volume histograms
arXiv
收藏 引用
arXiv 2020年
作者: Wahl, Niklas Hennig, Philipp Wieser, Hans-Peter Bangert, Mark German Cancer Research Center – DKFZ Im Neuenheimer Feld 280 Heidelberg69120 Germany Heidelberg Institute for Radiation Oncology – HIRO Im Neuenheimer Feld 280 Heidelberg69120 Germany Department of Physics and Astronomy Ruprecht Karls University Heidelberg Grabengasse 1 Heidelberg69117 Germany Probabilistics Numerics Max Planck Institute for Intelligent Systems Tübingen72076 Germany Chair for the Methods of Machine Learning Eberhard Karls University Tübingen Tübingen72024 Germany Medical Faculty Ruprecht Karls University Heidelberg Grabengasse 1 Heidelberg69117 Germany Department of Physics Ludwig-Maximilians-University of Munich Munich80539 Germany
Purpose: Radiotherapy, especially with charged particles, is sensitive to executional and preparational uncertainties that propagate to uncertainty in dose and plan quality indicators, e.g., dose-volume histograms (DV... 详细信息
来源: 评论