咨询与建议

限定检索结果

文献类型

  • 73 篇 期刊文献
  • 45 篇 会议
  • 2 册 图书

馆藏范围

  • 120 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 79 篇 工学
    • 59 篇 计算机科学与技术...
    • 52 篇 软件工程
    • 24 篇 控制科学与工程
    • 15 篇 信息与通信工程
    • 13 篇 生物医学工程(可授...
    • 13 篇 生物工程
    • 6 篇 光学工程
    • 5 篇 安全科学与工程
    • 4 篇 机械工程
    • 4 篇 电气工程
    • 4 篇 化学工程与技术
    • 3 篇 仪器科学与技术
    • 3 篇 交通运输工程
    • 3 篇 网络空间安全
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
  • 45 篇 理学
    • 28 篇 数学
    • 18 篇 统计学(可授理学、...
    • 14 篇 生物学
    • 9 篇 系统科学
    • 6 篇 物理学
    • 4 篇 化学
    • 2 篇 地球物理学
    • 2 篇 地质学
  • 13 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 7 篇 医学
    • 5 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 2 篇 教育学
    • 2 篇 教育学
  • 1 篇 法学
  • 1 篇 农学

主题

  • 8 篇 machine learning
  • 5 篇 semantics
  • 3 篇 object detection
  • 3 篇 three-dimensiona...
  • 3 篇 image segmentati...
  • 3 篇 neural networks
  • 3 篇 robot sensing sy...
  • 3 篇 human robot inte...
  • 3 篇 probabilistic lo...
  • 3 篇 stochastic syste...
  • 3 篇 pipelines
  • 3 篇 laser radar
  • 3 篇 training
  • 2 篇 reinforcement le...
  • 2 篇 semantic segment...
  • 2 篇 deep learning
  • 2 篇 problem solving
  • 2 篇 digital elevatio...
  • 2 篇 object segmentat...
  • 2 篇 market research

机构

  • 8 篇 max planck insti...
  • 6 篇 fraunhofer cente...
  • 6 篇 department empir...
  • 4 篇 munich center fo...
  • 4 篇 fraunhofer insti...
  • 4 篇 mpi for intellig...
  • 4 篇 machine learning...
  • 4 篇 institute of mac...
  • 4 篇 tübingen ai cent...
  • 3 篇 university of sc...
  • 3 篇 bosch center for...
  • 3 篇 machine learning...
  • 3 篇 helmholtz ai mun...
  • 3 篇 school of cybers...
  • 3 篇 max planck insti...
  • 3 篇 tu dortmund
  • 3 篇 pruna ai munich
  • 3 篇 machine learning...
  • 3 篇 fraunhofer insti...
  • 3 篇 department of sy...

作者

  • 20 篇 behnke sven
  • 14 篇 macke jakob h.
  • 7 篇 sven behnke
  • 6 篇 memmesheimer rap...
  • 6 篇 gao richard
  • 5 篇 vetter julius
  • 5 篇 schröder corneli...
  • 5 篇 houben sebastian
  • 5 篇 jakob h. macke
  • 4 篇 schölkopf bernha...
  • 4 篇 weichert dorina
  • 4 篇 kruzhkov evgenii
  • 4 篇 deistler michael
  • 4 篇 wang yao
  • 4 篇 kister alexander
  • 4 篇 pei felix
  • 4 篇 pätzold bastian
  • 4 篇 gloeckler manuel
  • 4 篇 moss guy
  • 4 篇 zhang lijun

语言

  • 96 篇 英文
  • 24 篇 其他
检索条件"机构=Center of Machine Learning and Intelligent Systems"
120 条 记 录,以下是11-20 订阅
排序:
Classification of Vulnerable Road Users based on Range-Doppler Maps of 77 GHz MIMO Radar using Different machine learning Approaches  22
Classification of Vulnerable Road Users based on Range-Doppl...
收藏 引用
6th International Conference on Graphics and Signal Processing, ICGSP 2022
作者: Bayram, Fatih S. Pütz, Florian Weiß, Julian Radtke, Roman Jesser, Alexander Stache, Nicolaj C. Institute for Intelligent Cyber-Physical Systems Heilbronn University of Applied Sciences Germany Center for Machine Learning Heilbronn University of Applied Sciences Germany
This paper involves the development of an intelligent delineator for road traffic detecting potential conflict situations between motor vehicles and vulnerable road users at an early stage. By emitting warning signals... 详细信息
来源: 评论
PlaySlot: learning Inverse Latent Dynamics for Controllable Object-Centric Video Prediction and Planning
arXiv
收藏 引用
arXiv 2025年
作者: Villar-Corrales, Angel Behnke, Sven Computer Science Institute VI – Intelligent Systems and Robotics Center for Robotics The Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Predicting future scene representations is a crucial task for enabling robots to understand and interact with the environment. However, most existing methods rely on video sequences and simulations with precise action... 详细信息
来源: 评论
LEAP-VO: Long-term Effective Any Point Tracking for Visual Odometry
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Weirong Chen, Le Wang, Rui Pollefeys, Marc TU Munich Germany Munich Center for Machine Learning Germany MPI for Intelligent Systems Germany Microsoft United States
Visual odometry estimates the motion of a moving camera based on visual input. Existing methods, mostly focusing on two-view point tracking, often ignore the rich temporal context in the image sequence, thereby overlo... 详细信息
来源: 评论
A Comparison of Prompt Engineering Techniques for Task Planning and Execution in Service Robotics
arXiv
收藏 引用
arXiv 2024年
作者: Bode, Jonas Pätzold, Bastian Memmesheimer, Raphael Behnke, Sven The Autonomous Intelligent Systems group Computer Science Institute VI – Intelligent Systems and Robotics Lamarr Institute for Machine Learning and Artificial Intelligence Center for Robotics University of Bonn Germany
Recent advances in Large Language Models (LLMs) have been instrumental in autonomous robot control and human-robot interaction by leveraging their vast general knowledge and capabilities to understand and reason acros... 详细信息
来源: 评论
SLCF-Net: Sequential LiDAR-Camera Fusion for Semantic Scene Completion using a 3D Recurrent U-Net
arXiv
收藏 引用
arXiv 2024年
作者: Cao, Helin Behnke, Sven Autonomous Intelligent Systems group Computer Science Institute VI-Intelligent Systems and Robotics Center for Robotics and the Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
We introduce SLCF-Net, a novel approach for the Semantic Scene Completion (SSC) task that sequentially fuses LiDAR and camera data. It jointly estimates missing geometry and semantics in a scene from sequences of RGB ... 详细信息
来源: 评论
A Comparison of Prompt Engineering Techniques for Task Planning and Execution in Service Robotics
A Comparison of Prompt Engineering Techniques for Task Plann...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Jonas Bode Bastian Pätzold Raphael Memmesheimer Sven Behnke Autonomous Intelligent Systems group Computer Science Institute VI – Intelligent Systems and Robotics Lamarr Institute for Machine Learning and Artificial Intelligence and Center for Robotics University of Bonn Germany
Recent advances in Large Language Models (LLMs) have been instrumental in autonomous robot control and human-robot interaction by leveraging their vast general knowledge and capabilities to understand and reason acros... 详细信息
来源: 评论
DiffSSC: Semantic LiDAR Scan Completion using Denoising Diffusion Probabilistic Models
arXiv
收藏 引用
arXiv 2024年
作者: Cao, Helin Behnke, Sven The Autonomous Intelligent Systems group Computer Science Institute VI – Intelligent Systems and Robotics The Center for Robotics The Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Perception systems play a crucial role in autonomous driving, incorporating multiple sensors and corresponding computer vision algorithms. 3D LiDAR sensors are widely used to capture sparse point clouds of the vehicle... 详细信息
来源: 评论
SLCF-Net: Sequential LiDAR-Camera Fusion for Semantic Scene Completion using a 3D Recurrent U-Net
SLCF-Net: Sequential LiDAR-Camera Fusion for Semantic Scene ...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Helin Cao Sven Behnke Autonomous Intelligent Systems Group Computer Science Institute VI – Intelligent Systems and Robotics – and the Center for Robotics and the Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
We introduce SLCF-Net, a novel approach for the Semantic Scene Completion (SSC) task that sequentially fuses LiDAR and camera data. It jointly estimates missing geometry and semantics in a scene from sequences of RGB ... 详细信息
来源: 评论
Grasp Anything: Combining Teacher-Augmented Policy Gradient learning with Instance Segmentation to Grasp Arbitrary Objects
arXiv
收藏 引用
arXiv 2024年
作者: Mosbach, Malte Behnke, Sven The Autonomous Intelligent Systems group Computer Science Institute VI - Intelligent Systems and Robotics The Center for Robotics The Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Interactive grasping from clutter, akin to human dexterity, is one of the longest-standing problems in robot learning. Challenges stem from the intricacies of visual perception, the demand for precise motor skills, an... 详细信息
来源: 评论
Self-centering 3-DoF Feet Controller for Hands-Free Locomotion Control in Telepresence and Virtual Reality
arXiv
收藏 引用
arXiv 2024年
作者: Memmesheimer, Raphael Lenz, Christian Schwarz, Max Schreiber, Michael Behnke, Sven The Autonomous Intelligent Systems group Computer Science Institute VI - Intelligent Systems and Robotics Lamarr Institute for Machine Learning and Artificial Intelligence Center for Robotics University of Bonn Germany
We present a novel seated feet controller for handling 3 Degree of Freedom (DoF) aimed to control locomotion for telepresence robotics and virtual reality environments. Tilting the feet on two axes yields in forward, ... 详细信息
来源: 评论