咨询与建议

限定检索结果

文献类型

  • 73 篇 期刊文献
  • 45 篇 会议
  • 2 册 图书

馆藏范围

  • 120 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 79 篇 工学
    • 59 篇 计算机科学与技术...
    • 52 篇 软件工程
    • 24 篇 控制科学与工程
    • 15 篇 信息与通信工程
    • 13 篇 生物医学工程(可授...
    • 13 篇 生物工程
    • 6 篇 光学工程
    • 5 篇 安全科学与工程
    • 4 篇 机械工程
    • 4 篇 电气工程
    • 4 篇 化学工程与技术
    • 3 篇 仪器科学与技术
    • 3 篇 交通运输工程
    • 3 篇 网络空间安全
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
  • 45 篇 理学
    • 28 篇 数学
    • 18 篇 统计学(可授理学、...
    • 14 篇 生物学
    • 9 篇 系统科学
    • 6 篇 物理学
    • 4 篇 化学
    • 2 篇 地球物理学
    • 2 篇 地质学
  • 13 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 7 篇 医学
    • 5 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 2 篇 教育学
    • 2 篇 教育学
  • 1 篇 法学
  • 1 篇 农学

主题

  • 8 篇 machine learning
  • 5 篇 semantics
  • 3 篇 object detection
  • 3 篇 three-dimensiona...
  • 3 篇 image segmentati...
  • 3 篇 neural networks
  • 3 篇 robot sensing sy...
  • 3 篇 human robot inte...
  • 3 篇 probabilistic lo...
  • 3 篇 stochastic syste...
  • 3 篇 pipelines
  • 3 篇 laser radar
  • 3 篇 training
  • 2 篇 reinforcement le...
  • 2 篇 semantic segment...
  • 2 篇 deep learning
  • 2 篇 problem solving
  • 2 篇 digital elevatio...
  • 2 篇 object segmentat...
  • 2 篇 market research

机构

  • 8 篇 max planck insti...
  • 6 篇 fraunhofer cente...
  • 6 篇 department empir...
  • 4 篇 munich center fo...
  • 4 篇 fraunhofer insti...
  • 4 篇 mpi for intellig...
  • 4 篇 machine learning...
  • 4 篇 institute of mac...
  • 4 篇 tübingen ai cent...
  • 3 篇 university of sc...
  • 3 篇 bosch center for...
  • 3 篇 machine learning...
  • 3 篇 helmholtz ai mun...
  • 3 篇 school of cybers...
  • 3 篇 max planck insti...
  • 3 篇 tu dortmund
  • 3 篇 pruna ai munich
  • 3 篇 machine learning...
  • 3 篇 fraunhofer insti...
  • 3 篇 department of sy...

作者

  • 20 篇 behnke sven
  • 14 篇 macke jakob h.
  • 7 篇 sven behnke
  • 6 篇 memmesheimer rap...
  • 6 篇 gao richard
  • 5 篇 vetter julius
  • 5 篇 schröder corneli...
  • 5 篇 houben sebastian
  • 5 篇 jakob h. macke
  • 4 篇 schölkopf bernha...
  • 4 篇 weichert dorina
  • 4 篇 kruzhkov evgenii
  • 4 篇 deistler michael
  • 4 篇 wang yao
  • 4 篇 kister alexander
  • 4 篇 pei felix
  • 4 篇 pätzold bastian
  • 4 篇 gloeckler manuel
  • 4 篇 moss guy
  • 4 篇 zhang lijun

语言

  • 104 篇 英文
  • 16 篇 其他
检索条件"机构=Center of Machine Learning and Intelligent Systems"
120 条 记 录,以下是31-40 订阅
排序:
Generalized Bayesian inference for scientific simulators via amortized cost estimation  23
Generalized Bayesian inference for scientific simulators via...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing systems
作者: Richard Gao Michael Deistler Jakob H. Macke Machine Learning in Science Excellence Cluster Machine Learning University of Tübingen and Tübingen AI Center Machine Learning in Science Excellence Cluster Machine Learning University of Tübingen and Tübingen AI Center and Department Empirical Inference Max Planck Institute for Intelligent Systems Tübingen Germany
Simulation-based inference (SBI) enables amortized Bayesian inference for simulators with implicit likelihoods. But when we are primarily interested in the quality of predictive simulations, or when the model cannot e...
来源: 评论
Simultaneous identification of models and parameters of scientific simulators  24
Simultaneous identification of models and parameters of scie...
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Cornelius Schröder Jakob H. Macke Machine Learning in Science University of Tübingen and Tübingen AI Center Germany Machine Learning in Science University of Tübingen and Tübingen AI Center Germany and Max Planck Institute for Intelligent Systems Department Empirical Inference Tübingen Germany
Many scientific models are composed of multiple discrete components, and scientists often make heuristic decisions about which components to include. Bayesian inference provides a mathematical framework for systematic...
来源: 评论
LiDAR-Based Registration Against Georeferenced Models for Globally Consistent Allocentric Maps
LiDAR-Based Registration Against Georeferenced Models for Gl...
收藏 引用
IEEE International Workshop on Safety, Security, and Rescue Robotics (SSRR)
作者: Jan Quenzel Linus T. Mallwitz Benedikt T. Arnold Sven Behnke Autonomous Intelligent Systems Group Computer Science Institute VI - Intelligent Systems and Robotics Center for Robotics and Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany Fraunhofer FIT Germany Fraunhofer IAIS Germany
Modern unmanned aerial vehicles (UAVs) are irreplaceable in search and rescue (SAR) missions to obtain a situational overview or provide closeups without endangering personnel. However, UAVs heavily rely on global nav... 详细信息
来源: 评论
Sourcerer: Sample-based Maximum Entropy Source Distribution Estimation
arXiv
收藏 引用
arXiv 2024年
作者: Vetter, Julius Moss, Guy Schröder, Cornelius Gao, Richard Macke, Jakob H. Machine Learning in Science Excellence Cluster Machine Learning University of Tübingen Tübingen Germany Tübingen AI Center Tübingen Germany Department Empirical Inference Max Planck Institute for Intelligent Systems Tübingen Germany
Scientific modeling applications often require estimating a distribution of parameters consistent with a dataset of observations—an inference task also known as source distribution estimation. This problem can be ill... 详细信息
来源: 评论
Adaptive deep probabilistic regression for real-time motor excitability state prediction from human EEG
收藏 引用
Brain Stimulation 2025年 第1期18卷 400-401页
作者: Haxel, Lisa Kapoor, Jaivardhan Ahola, Oskari Kahilakoski, Olli-Pekka Kirchhoff, Miriam Roine, Timo Ziemann, Ulf Macke, Jakob H. Machine Learning in Science Excellence Cluster Machine Learning & Tübingen AI Center Germany Hertie Institute for Clinical Brain Research Department Neurology and Stroke Germany Department of Neuroscience and Biomedical Engineering Aalto University School of Science Finland Department Empirical Inference Max Planck Institute for Intelligent Systems Germany
来源: 评论
Latent diffusion for neural spiking data  24
Latent diffusion for neural spiking data
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing systems
作者: Jaivardhan Kapoor Auguste Schulz Julius Vetter Felix Pei Richard Gao Jakob H. Macke Machine Learning in Science University of Tübingen & Tübingen AI Center Tübingen Germany Machine Learning in Science University of Tübingen & Tübingen AI Center Tübingen Germany and Department Empirical Inference Max Planck Institute for Intelligent Systems Tübingen Germany
Modern datasets in neuroscience enable unprecedented inquiries into the relationship between complex behaviors and the activity of many simultaneously recorded neurons. While latent variable models can successfully ex...
来源: 评论
Hierarchical Multiview Top-k Pooling with Deep-Q-Networks
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2024年 第6期5卷 2985-2996页
作者: Li, Zhi-Peng Su, Hai-Long Wu, Yong- Zhang, Qin-Hu Yuan, Chang-An Gribova, Valeriya Filaretov, Vladimir Fedorovich Huang, De-Shuang Eastern Institute of Technology Zhejiang Ningbo315201 China University of Science and Technology of China School of Life Sciences Anhui Hefei230026 China Tongji University Institute of Machine Learning and Systems Biology School of Electronics and Information Engineering Shanghai201804 China Guangxi Academy of Sciences Institute of Big Data and Intelligent Computing Research Center Nanning530007 China Far Eastern Branch of the Russian Academy of Sciences Institute of Automation and Control Processes Vladivostok690041 Russia
Graph neural networks (GNNs) are extensions of deep neural networks to graph-structured data. It has already attracted widespread attention for various tasks such as node classification and link prediction. Existing r... 详细信息
来源: 评论
LiDAR-based Registration against Georeferenced Models for Globally Consistent Allocentric Maps
arXiv
收藏 引用
arXiv 2024年
作者: Quenzel, Jan Mallwitz, Linus T. Arnold, Benedikt T. Behnke, Sven Autonomous Intelligent Systems Group Computer Science Institute VI – Intelligent Systems and Robotics Germany Center for Robotics Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany Fraunhofer FIT Germany Fraunhofer IAIS Germany
Modern unmanned aerial vehicles (UAVs) are irreplaceable in search and rescue (SAR) missions to obtain a situational overview or provide closeups without endangering personnel. However, UAVs heavily rely on global nav... 详细信息
来源: 评论
learning Embeddings with Centroid Triplet Loss for Object Identification in Robotic Grasping
Learning Embeddings with Centroid Triplet Loss for Object Id...
收藏 引用
IEEE International Conference on Automation Science and Engineering (CASE)
作者: Anas Gouda Max Schwarz Christopher Reining Sven Behnke Alice Kirchheim TU Dortmund Lamarr Institute for Machine Learning and Artificial Intelligence Autonomous Intelligent Systems - Computer Science VI & Center for Robotics University of Bonn Germany Fraunhofer IML
Foundation models are a strong trend in deep learning and computer vision. These models serve as a base for applications as they require minor or no further fine-tuning by developers to integrate into their applicatio... 详细信息
来源: 评论
Vectorized conditional neural fields: a framework for solving time-dependent parametric partial differential equations  24
Vectorized conditional neural fields: a framework for solvin...
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Jan Hagnberger Marimuthu Kalimuthu Daniel Musekamp Mathias Niepert Machine Learning and Simulation Lab Institute for Artificial Intelligence University of Stuttgart Stuttgart Germany Machine Learning and Simulation Lab Institute for Artificial Intelligence University of Stuttgart Stuttgart Germany and Stuttgart Center for Simulation Science (SimTech) and International Max Planck Research School for Intelligent Systems (IMPRS-IS) Machine Learning and Simulation Lab Institute for Artificial Intelligence University of Stuttgart Stuttgart Germany and International Max Planck Research School for Intelligent Systems (IMPRS-IS)
Transformer models are increasingly used for solving Partial Differential Equations (PDEs). Several adaptations have been proposed, all of which suffer from the typical problems of Transformers, such as quadratic memo...
来源: 评论