咨询与建议

限定检索结果

文献类型

  • 73 篇 期刊文献
  • 45 篇 会议
  • 2 册 图书

馆藏范围

  • 120 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 79 篇 工学
    • 59 篇 计算机科学与技术...
    • 52 篇 软件工程
    • 24 篇 控制科学与工程
    • 15 篇 信息与通信工程
    • 13 篇 生物医学工程(可授...
    • 13 篇 生物工程
    • 6 篇 光学工程
    • 5 篇 安全科学与工程
    • 4 篇 机械工程
    • 4 篇 电气工程
    • 4 篇 化学工程与技术
    • 3 篇 仪器科学与技术
    • 3 篇 交通运输工程
    • 3 篇 网络空间安全
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
  • 45 篇 理学
    • 28 篇 数学
    • 18 篇 统计学(可授理学、...
    • 14 篇 生物学
    • 9 篇 系统科学
    • 6 篇 物理学
    • 4 篇 化学
    • 2 篇 地球物理学
    • 2 篇 地质学
  • 13 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 7 篇 医学
    • 5 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 2 篇 教育学
    • 2 篇 教育学
  • 1 篇 法学
  • 1 篇 农学

主题

  • 8 篇 machine learning
  • 5 篇 semantics
  • 3 篇 object detection
  • 3 篇 three-dimensiona...
  • 3 篇 image segmentati...
  • 3 篇 neural networks
  • 3 篇 robot sensing sy...
  • 3 篇 human robot inte...
  • 3 篇 probabilistic lo...
  • 3 篇 stochastic syste...
  • 3 篇 pipelines
  • 3 篇 laser radar
  • 3 篇 training
  • 2 篇 reinforcement le...
  • 2 篇 semantic segment...
  • 2 篇 deep learning
  • 2 篇 problem solving
  • 2 篇 digital elevatio...
  • 2 篇 object segmentat...
  • 2 篇 market research

机构

  • 8 篇 max planck insti...
  • 6 篇 fraunhofer cente...
  • 6 篇 department empir...
  • 4 篇 munich center fo...
  • 4 篇 fraunhofer insti...
  • 4 篇 mpi for intellig...
  • 4 篇 machine learning...
  • 4 篇 institute of mac...
  • 4 篇 tübingen ai cent...
  • 3 篇 university of sc...
  • 3 篇 bosch center for...
  • 3 篇 machine learning...
  • 3 篇 helmholtz ai mun...
  • 3 篇 school of cybers...
  • 3 篇 max planck insti...
  • 3 篇 tu dortmund
  • 3 篇 pruna ai munich
  • 3 篇 machine learning...
  • 3 篇 fraunhofer insti...
  • 3 篇 department of sy...

作者

  • 20 篇 behnke sven
  • 14 篇 macke jakob h.
  • 7 篇 sven behnke
  • 6 篇 memmesheimer rap...
  • 6 篇 gao richard
  • 5 篇 vetter julius
  • 5 篇 schröder corneli...
  • 5 篇 houben sebastian
  • 5 篇 jakob h. macke
  • 4 篇 schölkopf bernha...
  • 4 篇 weichert dorina
  • 4 篇 kruzhkov evgenii
  • 4 篇 deistler michael
  • 4 篇 wang yao
  • 4 篇 kister alexander
  • 4 篇 pei felix
  • 4 篇 pätzold bastian
  • 4 篇 gloeckler manuel
  • 4 篇 moss guy
  • 4 篇 zhang lijun

语言

  • 104 篇 英文
  • 16 篇 其他
检索条件"机构=Center of Machine Learning and Intelligent Systems"
120 条 记 录,以下是81-90 订阅
排序:
GSLB: the graph structure learning benchmark  23
GSLB: the graph structure learning benchmark
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing systems
作者: Zhixun Li Liang Wang Xin Sun Yifan Luo Yanqiao Zhu Dingshuo Chen Yingtao Luo Xiangxin Zhou Qiang Liu Shu Wu Jeffrey Xu Yu Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong Center for Research on Intelligent Perception and Computing State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences and School of Artificial Intelligence University of Chinese Academy of Sciences and Department of Automation University of Science and Technology of China Department of Automation University of Science and Technology of China School of Cyberspace Security Beijing University of Posts and Telecommunications Department of Computer Science University of California Los Angeles Center for Research on Intelligent Perception and Computing State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences and School of Artificial Intelligence University of Chinese Academy of Sciences Heinz College of Information Systems and Public Policy Machine Learning Department School of Computer Science Carnegie Mellon University
Graph Structure learning (GSL) has recently garnered considerable attention due to its ability to optimize both the parameters of Graph Neural Networks (GNNs) and the computation graph structure simultaneously. Despit...
来源: 评论
Exact Decomposition of Joint Low Rankness and Local Smoothness Plus Sparse Matrices
arXiv
收藏 引用
arXiv 2022年
作者: Peng, Jiangjun Wang, Yao Zhang, Hongying Wang, Jianjun Meng, Deyu School of Mathematics and Statistics Ministry of Education Key Lab of Intelligent Networks and Network Security Xi'an Jiaotong University Shaan'xi Xi’an710049 China The Center for Intelligent Decision-making and Machine Learning School of Management Xian Jiaotong University Shaan'xi Xi’an China The College of Artificial Intelligence Southwest University Chongqing400715 China Macau Institute of Systems Engineering Macau University of Science and Technology Taipa China
It is known that the decomposition in low-rank and sparse matrices (L+S for short) can be achieved by several Robust PCA techniques. Besides the low rankness, the local smoothness (LSS) is a vitally essential prior fo... 详细信息
来源: 评论
GSLB: The Graph Structure learning Benchmark
arXiv
收藏 引用
arXiv 2023年
作者: Li, Zhixun Wang, Liang Sun, Xin Luo, Yifan Zhu, Yanqiao Chen, Dingshuo Luo, Yingtao Zhou, Xiangxin Liu, Qiang Wu, Shu Yu, Jeffrey Xu Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong Hong Kong Center for Research on Intelligent Perception Computing State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China Department of Automation University of Science and Technology of China China School of Cyberspace Security Beijing University of Posts and Telecommunications China Department of Computer Science University of California Los Angeles United States Heinz College of Information Systems and Public Policy Machine Learning Department School of Computer Science Carnegie Mellon University United States
Graph Structure learning (GSL) has recently garnered considerable attention due to its ability to optimize both the parameters of Graph Neural Networks (GNNs) and the computation graph structure simultaneously. Despit... 详细信息
来源: 评论
Optimal Probabilistic Classification in Active Class Selection
Optimal Probabilistic Classification in Active Class Selecti...
收藏 引用
IEEE International Conference on Data Mining (ICDM)
作者: Mirko Bunse Dorina Weichert Alexander Kister Katharina Morik Artificial Intelligence Group TU Dortmund University Germany Fraunhofer Institute for Intelligent Analysis and Information Systems Germany Fraunhofer Center for Machine Learning Germany
The goal of active class selection (ACS) is to optimize the class proportions in newly acquired data; a classifier trained from that data should exhibit maximum performance during its deployment. This paper provides a... 详细信息
来源: 评论
Optimization of high precision manufacturing by Monte Carlo tree search
arXiv
收藏 引用
arXiv 2021年
作者: Weichert, Dorina Horchler, Felix Kister, Alexander Trost, Marcus Hartung, Johannes Risse, Stefan Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS Schloss Birlinghoven Sankt Augustin53757 Germany Fraunhofer Center for Machine Learning Institute of Computer Science Bonn University Bonn53115 Germany Fraunhofer Institue for Applied Optics and Precision Engineering IOF Jena07745 Germany
Monte Carlo Tree Search (MCTS) has shown its strength for a lot of deterministic and stochastic examples, but literature lacks reports of applications to real world industrial processes. Common reasons for this are th... 详细信息
来源: 评论
Characteristics of Monte Carlo Dropout in Wide Neural Networks
arXiv
收藏 引用
arXiv 2020年
作者: Sicking, Joachim Akila, Maram Wirtz, Tim Houben, Sebastian Fischer, Asja Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS Sankt Augustin Germany Fraunhofer Center for Machine Learning Faculty of Mathematics Ruhr-University Bochum Bochum Germany
Monte Carlo (MC) dropout is one of the state-of-the-art approaches for uncertainty estimation in neural networks (NNs). It has been interpreted as approximately performing Bayesian inference. Based on previous work on... 详细信息
来源: 评论
sbi reloaded: a toolkit for simulation-based inference workflows
arXiv
收藏 引用
arXiv 2024年
作者: Boelts, Jan Deistler, Michael Gloeckler, Manuel Tejero-Cantero, Álvaro Lueckmann, Jan-Matthis Moss, Guy Steinbach, Peter Moreau, Thomas Muratore, Fabio Linhart, Julia Durkan, Conor Vetter, Julius Miller, Benjamin Kurt Herold, Maternus Ziaeemehr, Abolfazl Pals, Matthijs Gruner, Theo Bischoff, Sebastian Krouglova, Anastasia N. Gao, Richard Lappalainen, Janne K. Mucsányi, Bálint Pei, Felix Schulz, Auguste Stefanidi, Zinovia Rodrigues, Pedro L.C. Schröder, Cornelius Zaid, Faried Abu Beck, Jonas Kapoor, Jaivardhan Greenberg, David S. Gonçalves, Pedro J. Macke, Jakob H. Machine Learning in Science University of Tübingen Germany Tübingen AI Center Germany TransferLab AppliedAI Institute for Europe Germany ML Colab Cluster ML in Science University of Tübingen Germany Google Research United States Helmholtz-Zentrum Dresden-Rossendorf Germany Université Paris-Saclay INRIA CEA Palaiseau France Robert Bosch GmbH Germany School of Informatics University of Edinburgh United Kingdom University of Amsterdam Netherlands Research and Innovation Center BMW Group Germany Institute for Applied Mathematics and Scientific Computing University of the Bundeswehr Munich Germany Aix Marseille INSERM INS France TU Darmstadt Hessian.AI Germany University Hospital Tübingen M3 Research Center Germany Faculty of Science KU Leuven B-3000 Belgium Imec Belgium Methods of Machine Learning University of Tübingen Germany Neuroscience Institute Carnegie Mellon University United States Université Grenoble Alpes INRIA CNRS Grenoble INP LJK France Hertie Institute for AI in Brain Health University of Tübingen Germany Institute of Coastal Systems - Analysis and Modeling Helmholtz AI Germany Departments of Computer Science Electrical Engineering KU Leuven Belgium Department Empirical Inference Max Planck Institute for Intelligent Systems Tübingen Germany
Scientists and engineers use simulators to model empirically observed phenomena. However, tuning the parameters of a simulator to ensure its outputs match observed data presents a significant challenge. Simulation-bas... 详细信息
来源: 评论
Predicting Motor Excitability in TMS using EEG-Features: A machine learning Approach
收藏 引用
Clinical Neurophysiology 2024年 159卷 e47-e48页
作者: Haxel, L. Belardinelli, P. Macke, J.H. Ziemann, U. Hertie Institute for Clinical Brain Research University of Tübingen Germany Department of Neurology & Stroke University of Tübingen Germany Machine Learning in Science Excellence Cluster Machine Learning University of Tübingen Germany Tübingen AI Center University of Tübingen Germany CiMeC Center for Mind and Brain Sciences University of Trento Italy Max Planck Institute for Intelligent Systems Tübingen Germany Department of Neurology & Stroke and Hertie Institute for Clinical Brain Research Eberhard Karls University Tübingen Germany
来源: 评论
Convolutional Capsule-Based Network for Person Re-identification  15th
Convolutional Capsule-Based Network for Person Re-identifica...
收藏 引用
15th International Conference on intelligent Computing, ICIC 2019
作者: Li, Andong Wu, Di Huang, De-Shuang Zhang, Lijun Institute of Machine Learning and Systems Biology School of Electronics and Information Engineering Tongji University Shanghai China Collaborative Innovation Center of Intelligent New Energy Vehicle Shanghai China School of Automotive Studies Tongji University Shanghai China
Person re-identification is yet a critical challenging task in video surveillance domain. It aims to match the same person across different cameras. Practically, pedestrian’s appearances may vary greatly due to the c... 详细信息
来源: 评论
Real-time gravitational-wave inference for binary neutron stars using machine learning
arXiv
收藏 引用
arXiv 2024年
作者: Dax, Maximilian Green, Stephen R. Gair, Jonathan Gupte, Nihar Pürrer, Michael Raymond, Vivien Wildberger, Jonas Macke, Jakob H. Buonanno, Alessandra Schölkopf, Bernhard Max Planck Institute for Intelligent Systems Max-Planck-Ring 4 Tübingen72076 Germany School of Mathematical Sciences University of Nottingham University Park NottinghamNG7 2RD United Kingdom Am Mühlenberg 1 Potsdam14476 Germany Department of Physics University of Maryland College ParkMD20742 United States Department of Physics University of Rhode Island East Hall KingstonRI02881 United States Center for Computational Research Carothers Library University of Rhode Island KingstonRI02881 United States Gravity Exploration Institute Cardiff University CardiffCF24 3AA United Kingdom ELLIS Institute Tübingen Maria-von-Linden-Straße 2 Tübingen72076 Germany Machine Learning in Science University of Tübingen & Tübingen AI Center Tübingen72076 Germany
Mergers of binary neutron stars (BNSs) emit signals in both the gravitational-wave (GW) and electromagnetic (EM) spectra. Famously, the 2017 multi-messenger observation of GW170817 [1, 2] led to scientific discoveries... 详细信息
来源: 评论