咨询与建议

限定检索结果

文献类型

  • 27 篇 期刊文献
  • 27 篇 会议

馆藏范围

  • 54 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 43 篇 工学
    • 40 篇 计算机科学与技术...
    • 39 篇 软件工程
    • 6 篇 信息与通信工程
    • 4 篇 化学工程与技术
    • 4 篇 生物工程
    • 2 篇 机械工程
    • 2 篇 控制科学与工程
    • 1 篇 电气工程
    • 1 篇 生物医学工程(可授...
  • 21 篇 管理学
    • 18 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
  • 20 篇 理学
    • 13 篇 数学
    • 6 篇 生物学
    • 5 篇 统计学(可授理学、...
    • 3 篇 化学
    • 1 篇 系统科学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 文学
    • 1 篇 中国语言文学
    • 1 篇 外国语言文学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 5 篇 neural machine t...
  • 3 篇 hierarchical sys...
  • 3 篇 clustering algor...
  • 2 篇 neurons
  • 2 篇 distillation
  • 2 篇 long short-term ...
  • 2 篇 image segmentati...
  • 2 篇 large dataset
  • 2 篇 data mining
  • 2 篇 pattern recognit...
  • 2 篇 nearest neighbor...
  • 2 篇 alignment
  • 2 篇 students
  • 2 篇 sentiment analys...
  • 1 篇 page description...
  • 1 篇 machine translat...
  • 1 篇 learning systems
  • 1 篇 statistical meth...
  • 1 篇 text similarity
  • 1 篇 support vector m...

机构

  • 25 篇 pattern recognit...
  • 24 篇 beijing key lab ...
  • 5 篇 center for patte...
  • 4 篇 center for patte...
  • 3 篇 school of inform...
  • 3 篇 university of in...
  • 3 篇 center of patter...
  • 2 篇 national laborat...
  • 2 篇 prhlt research c...
  • 2 篇 pattern recognit...
  • 2 篇 beijing key labo...
  • 2 篇 center for patte...
  • 2 篇 center of patter...
  • 2 篇 prhlt universita...
  • 2 篇 cas center for e...
  • 2 篇 universitat jaum...
  • 2 篇 center for patte...
  • 2 篇 advanced technol...
  • 1 篇 autoritas consul...
  • 1 篇 national laborat...

作者

  • 28 篇 zhou jie
  • 28 篇 meng fandong
  • 27 篇 xu jinan
  • 25 篇 chen yufeng
  • 18 篇 liang yunlong
  • 8 篇 pons-porrata aur...
  • 5 篇 rosso paolo
  • 4 篇 zhang xue
  • 4 篇 zhang songming
  • 4 篇 wang jiaan
  • 4 篇 liu yijin
  • 4 篇 ortega-bueno rey...
  • 3 篇 lai siyu
  • 3 篇 medina pagola jo...
  • 3 篇 yang zhen
  • 3 篇 su jinsong
  • 3 篇 zhou chulun
  • 2 篇 hua han
  • 2 篇 gil-garcía reyna...
  • 2 篇 qiwei xie

语言

  • 46 篇 英文
  • 8 篇 其他
检索条件"机构=Center of Pattern Recognition and Data Mining"
54 条 记 录,以下是11-20 订阅
排序:
Modeling bilingual conversational characteristics for neural chat translation  59
Modeling bilingual conversational characteristics for neural...
收藏 引用
Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL-IJCNLP 2021
作者: Liang, Yunlong Meng, Fandong Chen, Yufeng Xu, Jinan Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
Neural chat translation aims to translate bilingual conversational text, which has a broad application in international exchanges and cooperation. Despite the impressive performance of sentence-level and context-aware... 详细信息
来源: 评论
Generating Authentic Adversarial Examples beyond Meaning-preserving with Doubly Round-trip Translation
arXiv
收藏 引用
arXiv 2022年
作者: Lai, Siyu Yang, Zhen Meng, Fandong Zhang, Xue Chen, Yufeng Xu, Jinan Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China Pattern Recognition Center WeChat AI Tencent Inc China
Generating adversarial examples for Neural Machine Translation (NMT) with single Round-Trip Translation (RTT) has achieved promising results by releasing the meaning-preserving restriction. However, a potential pitfal... 详细信息
来源: 评论
RC3: Regularized Contrastive Cross-lingual Cross-modal Pre-training
arXiv
收藏 引用
arXiv 2023年
作者: Zhou, Chulun Liang, Yunlong Meng, Fandong Xu, Jinan Su, Jinsong Zhou, Jie Pattern Recognition Center WeChat AI Tencent Inc. China Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China School of Informatics Xiamen University Xiamen China
Multilingual vision-language (V&L) pretraining has achieved remarkable progress in learning universal representations across different modalities and languages. In spite of recent success, there still remain chall... 详细信息
来源: 评论
Conditional Bilingual Mutual Information Based Adaptive Training for Neural Machine Translation
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Songming Liu, Yijin Meng, Fandong Chen, Yufeng Xu, Jinan Liu, Jian Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
Token-level adaptive training approaches can alleviate the token imbalance problem and thus improve neural machine translation, through re-weighting the losses of different target tokens based on specific statistical ... 详细信息
来源: 评论
Scheduled Multi-task Learning for Neural Chat Translation
arXiv
收藏 引用
arXiv 2022年
作者: Liang, Yunlong Meng, Fandong Xu, Jinan Chen, Yufeng Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
The goal of the Neural Chat Translation (NCT) is to translate conversational text into different languages. Existing methods mainly focus on modeling the bilingual dialogue characteristics (e.g., coherence) to improve... 详细信息
来源: 评论
BJTU-WeChat's Systems for the WMT22 Chat Translation Task
arXiv
收藏 引用
arXiv 2022年
作者: Liang, Yunlong Meng, Fandong Xu, Jinan Chen, Yufeng Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
This paper introduces the joint submission of the Beijing Jiaotong University and WeChat AI to the WMT’22 chat translation task for English↔German. Based on the Transformer (Vaswani et al., 2017), we apply several ef... 详细信息
来源: 评论
D2TV: Dual Knowledge Distillation and Target-oriented Vision Modeling for Many-to-Many Multimodal Summarization
arXiv
收藏 引用
arXiv 2023年
作者: Liang, Yunlong Meng, Fandong Wang, Jiaan Xu, Jinan Chen, Yufeng Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China School of Computer Science and Technology Soochow University Suzhou China
Many-to-many multimodal summarization (M3S) task aims to generate summaries in any language with document inputs in any language and the corresponding image sequence, which essentially comprises multimodal monolingual... 详细信息
来源: 评论
Summary-Oriented Vision Modeling for Multimodal Abstractive Summarization
arXiv
收藏 引用
arXiv 2022年
作者: Liang, Yunlong Meng, Fandong Xu, Jinan Wang, Jiaan Chen, Yufeng Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
Multimodal abstractive summarization (MAS) aims to produce a concise summary given the multimodal data (text and vision). Existing studies mainly focus on how to effectively use the visual features from the perspectiv... 详细信息
来源: 评论
MSCTD: A Multimodal Sentiment Chat Translation dataset
arXiv
收藏 引用
arXiv 2022年
作者: Liang, Yunlong Meng, Fandong Xu, Jinan Chen, Yufeng Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
Multimodal machine translation and textual chat translation have received considerable attention in recent years. Although the conversation in its natural form is usually multimodal, there still lacks work on multimod... 详细信息
来源: 评论
Cross-Align: Modeling Deep Cross-lingual Interactions for Word Alignment
arXiv
收藏 引用
arXiv 2022年
作者: Lai, Siyu Yang, Zhen Meng, Fandong Chen, Yufeng Xu, Jinan Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
Word alignment which aims to extract lexicon translation equivalents between source and target sentences, serves as a fundamental tool for natural language processing. Recent studies in this area have yielded substant... 详细信息
来源: 评论