咨询与建议

限定检索结果

文献类型

  • 59 篇 会议
  • 17 篇 期刊文献

馆藏范围

  • 76 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 42 篇 工学
    • 26 篇 计算机科学与技术...
    • 25 篇 软件工程
    • 10 篇 机械工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 信息与通信工程
    • 3 篇 控制科学与工程
    • 3 篇 生物工程
    • 2 篇 化学工程与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 光学工程
    • 1 篇 仪器科学与技术
    • 1 篇 电气工程
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
  • 19 篇 理学
    • 12 篇 数学
    • 6 篇 物理学
    • 4 篇 生物学
    • 2 篇 化学
    • 1 篇 系统科学
  • 7 篇 管理学
    • 4 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 23 篇 pattern recognit...
  • 17 篇 machine intellig...
  • 17 篇 character recogn...
  • 10 篇 image segmentati...
  • 9 篇 handwriting reco...
  • 8 篇 feature extracti...
  • 7 篇 computer science
  • 7 篇 face recognition
  • 7 篇 text analysis
  • 6 篇 neural networks
  • 6 篇 optical characte...
  • 5 篇 image analysis
  • 4 篇 databases
  • 4 篇 fractals
  • 4 篇 image recognitio...
  • 4 篇 pattern analysis
  • 4 篇 shape
  • 3 篇 hidden markov mo...
  • 3 篇 application soft...
  • 3 篇 pixel

机构

  • 10 篇 center for patte...
  • 8 篇 center for patte...
  • 6 篇 center for patte...
  • 4 篇 department of co...
  • 4 篇 center for patte...
  • 4 篇 department of co...
  • 4 篇 department of ma...
  • 4 篇 center for patte...
  • 3 篇 center for patte...
  • 2 篇 laboratory for i...
  • 2 篇 center of patter...
  • 2 篇 center for artif...
  • 2 篇 center of patter...
  • 2 篇 deptartment of c...
  • 2 篇 school of mathem...
  • 2 篇 center for patte...
  • 2 篇 centre for patte...
  • 2 篇 department of co...
  • 2 篇 department of ma...
  • 2 篇 center of patter...

作者

  • 20 篇 c.y. suen
  • 15 篇 suen ching y.
  • 8 篇 vinay a.
  • 7 篇 s natarajan
  • 7 篇 y.y. tang
  • 6 篇 natarajan s.
  • 6 篇 ching y. suen
  • 6 篇 suen c.y.
  • 5 篇 vinay a
  • 4 篇 t.d. bui
  • 4 篇 k n balasubraman...
  • 4 篇 kim soo h.
  • 3 篇 murthy k.n. bala...
  • 3 篇 hong ma
  • 3 篇 j. sadri
  • 3 篇 ma hong
  • 3 篇 tang y.y.
  • 3 篇 s.h. kim
  • 2 篇 zhou jie
  • 2 篇 meghana

语言

  • 76 篇 英文
检索条件"机构=Center of Pattern Recognition and Machine Intelligence"
76 条 记 录,以下是1-10 订阅
排序:
Error-correcting output coding for the convolutional neural network for optical character recognition
Error-correcting output coding for the convolutional neural ...
收藏 引用
ICDAR2009 - 10th International Conference on Document Analysis and recognition
作者: Deng, Huiqun Stathopoulos, George Suen, Ching Y. Center for Pattern Recognition and Machine Intelligence Concordia University Canada
It is known that convolutional neural networks (CNNs) are efficient for optical character recognition (OCR) and many other visual classification tasks. This paper applies error-correcting output coding (ECOC) to the C... 详细信息
来源: 评论
Isolated handwritten Farsi numerals recognition using sparse and over-complete representations
Isolated handwritten Farsi numerals recognition using sparse...
收藏 引用
ICDAR2009 - 10th International Conference on Document Analysis and recognition
作者: Pan, W.M. Bui, T.D. Suen, C.Y. Center for Pattern Recognition and Machine Intelligence Concordia University Canada
A new isolated handwritten Farsi numeral recognition algorithm is proposed in this paper, which exploits the sparse and over-complete structure from the handwritten Farsi numeral data. In this research, the sparse str... 详细信息
来源: 评论
Deep Learning on Binary patterns for Face recognition
Deep Learning on Binary Patterns for Face Recognition
收藏 引用
2018 International Conference on Computational intelligence and Data Science, ICCIDS 2018
作者: Vinay, A. Gupta, Abhijay Bharadwaj, Aprameya Srinivasan, Arvind Murthy, K.N. Balasubramanya Natarajan, S. Center for Pattern Recognition and Machine Intelligence PES University Bengaluru India
In this paper an efficient and robust method for real-time face recognition is proposed. As a part of pre-processing to remove noise and unwanted features, a filter is applied to the images of standard datasets. Subse... 详细信息
来源: 评论
Enhancement of Degraded CCTV Footage for Forensic Analysis  3rd
Enhancement of Degraded CCTV Footage for Forensic Analysis
收藏 引用
3rd International Conference on Innovative Computing and Communication, ICICC 2020
作者: Vinay, A. Lokesh, Aditya Kamath, Vinayaka R. Murty, K.N.B. Natarajan, S. Center for Pattern Recognition and Machine Intelligence PES University Bengaluru India
Forensic analysis has proved to be one of the most utilitarian tool in investigating crime. Forensic analysis provides evidence/basic information of the said crime through analysis of physical evidence. In this paper,... 详细信息
来源: 评论
Sparse Locally Adaptive Regression Kernel for Face Verification
Sparse Locally Adaptive Regression Kernel for Face Verificat...
收藏 引用
2018 International Conference on Computational intelligence and Data Science, ICCIDS 2018
作者: Vinay, A. Kamath, Vinayaka R. Varun, M. Murthy, K.N. Balasubramanya Natarajan, S. Center for Pattern Recognition and Machine Intelligence PES University Bengaluru India
The paper presents several thresholds obtained by heuristic approach for face verification using Locally Adaptive Regression Kernel (LARK) descriptors for euclidean, cosine and chebyshev distance metrics. The absence ... 详细信息
来源: 评论
On Detectors and Descriptors based Techniques for Face recognition
On Detectors and Descriptors based Techniques for Face Recog...
收藏 引用
2018 International Conference on Computational intelligence and Data Science, ICCIDS 2018
作者: Vinay, A. Aklecha, Nishant Meghana Murthy, K.N. Balasubramanya Natarajan, S. Center for Pattern Recognition and Machine Intelligence PES University Bengaluru India
Out of all forms of biometrics, Face recognition (FR) emerges as the most incredible one. Apart from offering revolutionary applications for business and law-enforcement purposes, it has also opened numerous research ... 详细信息
来源: 评论
Optimal KAZE and AKAZE Features for Facial Similarity Matching  1
收藏 引用
Proceedings of the 7th International Conference on Advances in Computing and Data Sciences, ICACDS 2023
作者: Vinay, A. Vasu, Kishan Athirala Lodha, Pranav Yogi Natarajan, S. Sudarshan, T.S.B. Center for Pattern Recognition and Machine Intelligence PES University Bengaluru560085 India
Face recognition is one of the premier disciplines in the vast field of computer vision and image analysis. A popular method is the Gaussian scale space analysis which limits the performance by smoothing both the nois... 详细信息
来源: 评论
Four directional adjacency graphs (FDAG) and their application in locating fields in forms  3
Four directional adjacency graphs (FDAG) and their applicati...
收藏 引用
3rd International Conference on Document Analysis and recognition, ICDAR 1995
作者: Yuan, Jianxing Tang, Y.Y. Suen, C.Y. Center for Pattern Recognition and Machine Intelligence Concordia University MontrealH3T1E8 Canada
A new non-hierarchical spatial data structure named four directional adjacency graphs (FDAG) is proposed. In the FDAG vertical and horizontal neighborhood relationship between rectangles is well represented so that st...
来源: 评论
Sparse Locally Adaptive Regression Kernel For Face Verification
收藏 引用
Procedia Computer Science 2018年 132卷 890-899页
作者: Vinay A Vinayaka R Kamath Varun M K N Balasubramanya Murthy S Natarajan Center for Pattern Recognition and Machine Intelligence PES University Bengaluru India
The paper presents several thresholds obtained by heuristic approach for face verification using Locally Adaptive Regression Kernel (LARK) descriptors for euclidean, cosine and chebyshev distance metrics. The absence ... 详细信息
来源: 评论
Deep Learning on Binary patterns for Face recognition
收藏 引用
Procedia Computer Science 2018年 132卷 76-83页
作者: A Vinay Abhijay Gupta Aprameya Bharadwaj Arvind Srinivasan K N Balasubramanya Murthy S Natarajan Center for Pattern Recognition and Machine Intelligence PES University Bengaluru India
In this paper an efficient and robust method for real-time face recognition is proposed. As a part of pre-processing to remove noise and unwanted features, a filter is applied to the images of standard datasets. Subse... 详细信息
来源: 评论