咨询与建议

限定检索结果

文献类型

  • 32 篇 会议
  • 10 篇 期刊文献

馆藏范围

  • 42 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 21 篇 工学
    • 15 篇 控制科学与工程
    • 10 篇 机械工程
    • 4 篇 计算机科学与技术...
    • 4 篇 软件工程
    • 3 篇 仪器科学与技术
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 8 篇 理学
    • 4 篇 数学
    • 3 篇 物理学
    • 3 篇 系统科学
    • 3 篇 统计学(可授理学、...
    • 1 篇 生物学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 6 篇 mobile robots
  • 6 篇 robots
  • 6 篇 robotics and aut...
  • 4 篇 planning
  • 4 篇 intelligent robo...
  • 4 篇 humanoid robots
  • 4 篇 robot sensing sy...
  • 4 篇 manipulator dyna...
  • 4 篇 games
  • 3 篇 task analysis
  • 3 篇 orbital robotics
  • 3 篇 human-robot inte...
  • 3 篇 humans
  • 2 篇 legged locomotio...
  • 2 篇 trajectories
  • 2 篇 computational mo...
  • 2 篇 trajectory
  • 2 篇 wheels
  • 2 篇 robot vision sys...
  • 2 篇 artificial intel...

机构

  • 3 篇 school of intera...
  • 3 篇 institute for ro...
  • 2 篇 center for robot...
  • 2 篇 center for robot...
  • 2 篇 institute for ro...
  • 2 篇 institute for ro...
  • 2 篇 school of comput...
  • 2 篇 center for robot...
  • 2 篇 center of roboti...
  • 2 篇 school of aerosp...
  • 2 篇 school of intera...
  • 1 篇 university of sc...
  • 1 篇 visual artificia...
  • 1 篇 universitat autò...
  • 1 篇 cibm center for ...
  • 1 篇 faculty of engin...
  • 1 篇 university of ab...
  • 1 篇 kist center for ...
  • 1 篇 intelligent syst...
  • 1 篇 xlab d.o.o. ljub...

作者

  • 6 篇 mike stilman
  • 5 篇 tsiotras panagio...
  • 5 篇 ayanna howard
  • 4 篇 jin xu
  • 4 篇 james m. rehg
  • 4 篇 tucker hermans
  • 4 篇 knaup jacob w.
  • 3 篇 panagiotis tsiot...
  • 3 篇 jacob w. knaup
  • 3 篇 henrik i. christ...
  • 2 篇 hutchinson seth
  • 2 篇 aaron f. bobick
  • 2 篇 t.c. henderson
  • 2 篇 varun agrawal
  • 2 篇 a.l. nelson
  • 2 篇 agrawal varun
  • 2 篇 e. grant
  • 2 篇 neil dantam
  • 2 篇 frank dellaert
  • 2 篇 dellaert frank

语言

  • 42 篇 英文
检索条件"机构=Center of Robotics and Intelligent Machines and The School of Interactive Computing"
42 条 记 录,以下是1-10 订阅
排序:
Adaptive Dual Covariance Steering with Active Parameter Estimation  63
Adaptive Dual Covariance Steering with Active Parameter Esti...
收藏 引用
63rd IEEE Conference on Decision and Control, CDC 2024
作者: Knaup, Jacob W. Tsiotras, Panagiotis Georgia Institute of Technology School of Interactive Computing College of Computing and the Institute for Robotics and Intelligent Machines AtlantaGA30332-0250 United States Georgia Institute of Technology School of Aerospace Engineering The Institute for Robotics and Intelligent Machines AtlantaGA30332-0150 United States
This work examines the optimal covariance steering problem for systems subject to unknown parameters that enter multiplicatively with the state and control, in addition to additive disturbances. In contrast to existin... 详细信息
来源: 评论
A Group Theoretic Metric for Robot State Estimation Leveraging Chebyshev Interpolation
A Group Theoretic Metric for Robot State Estimation Leveragi...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Varun Agrawal Frank Dellaert Institute for Robotics and Intelligent Machines and School of Interactive Computing Georgia Institute of Technology Atlanta GA USA
We propose a new metric for robot state estimation based on the recently introduced SE 2 (3) Lie group definition. Our metric is related to prior metrics for SLAM but explicitly takes into account the linear velocity ... 详细信息
来源: 评论
Adaptive Dual Covariance Steering with Active Parameter Estimation
Adaptive Dual Covariance Steering with Active Parameter Esti...
收藏 引用
IEEE Conference on Decision and Control
作者: Jacob W. Knaup Panagiotis Tsiotras School of Interactive Computing College of Computing and the Institute for Robotics and Intelligent Machines Georgia Institute of Technology Atlanta GA USA School of Aerospace Engineering and the Institute for Robotics and Intelligent Machines Georgia Institute of Technology Atlanta GA USA
This work examines the optimal covariance steering problem for systems subject to unknown parameters that enter multiplicatively with the state and control, in addition to additive disturbances. In contrast to existin... 详细信息
来源: 评论
A Group Theoretic Metric for Robot State Estimation Leveraging Chebyshev Interpolation
arXiv
收藏 引用
arXiv 2024年
作者: Agrawal, Varun Dellaert, Frank Institute for Robotics and Intelligent Machines School of Interactive Computing Georgia Institute of Technology AtlantaGA30332 United States
We propose a new metric for robot state estimation based on the recently introduced SE2(3) Lie group definition. Our metric is related to prior metrics for SLAM but explicitly takes into account the linear velocity of... 详细信息
来源: 评论
Recursively Feasible Stochastic Model Predictive Control for Time-Varying Linear Systems Subject to Unbounded Disturbances
arXiv
收藏 引用
arXiv 2024年
作者: Knaup, Jacob W. Tsiotras, Panagiotis Georgia Institute of Technology School of Interactive Computing Institute for Robotics and Intelligent Machines AtlantaGA United States Georgia Institute of Technology School of Aerospace Engineering Institute for Robotics and Intelligent Machines AtlantaGA United States
Model predictive control solves a constrained optimization problem online in order to compute an implicit closed-loop control policy. Recursive feasibility—guaranteeing that the optimal control problem will have a so...
来源: 评论
Adaptive Dual Covariance Steering with Active Parameter Estimation
arXiv
收藏 引用
arXiv 2024年
作者: Knaup, Jacob W. Tsiotras, Panagiotis School of Interactive Computing College of Computing Institute for Robotics and Intelligent Machines Georgia Institute of Technology AtlantaGA30332-0250 United States School of Aerospace Engineering Institute for Robotics and Intelligent Machines Georgia Institute of Technology AtlantaGA30332-0150 United States
This work examines the optimal covariance steering problem for systems subject to unknown parameters that enter multiplicatively with the state and control, in addition to additive disturbances. In contrast to existin... 详细信息
来源: 评论
Computationally Efficient Covariance Steering for Systems Subject to Parametric Disturbances and Chance Constraints
Computationally Efficient Covariance Steering for Systems Su...
收藏 引用
IEEE Conference on Decision and Control
作者: Jacob W. Knaup Panagiotis Tsiotras School of Interactive Computing College of Computing and the Institute for Robotics and Intelligent Machines Georgia Institute of Technology Atlanta GA USA School of Aerospace Engineering and the Institute for Robotics and Intelligent Machines Georgia Institute of Technology Atlanta GA USA
This work investigates the finite-horizon optimal covariance steering problem for discrete-time linear systems subject to both additive and multiplicative uncertainties as well as state and input chance constraints. I...
来源: 评论
Covariance Steering for Systems Subject to Unknown Parameters
Covariance Steering for Systems Subject to Unknown Parameter...
收藏 引用
IEEE Conference on Decision and Control
作者: Jacob W. Knaup Panagiotis Tsiotras School of Interactive Computing College of Computing Institute for Robotics and Intelligent Machines Georgia Institute of Technology Atlanta GA USA School of Aerospace Engineering Institute for Robotics and Intelligent Machines Georgia Institute of Technology Atlanta GA USA
This work considers the optimal covariance steering problem for stochastic systems subject to both additive noise and uncertain parameters which may enter multiplicatively with the state and the control. The unknown p...
来源: 评论
Covariance Steering for Systems Subject to Unknown Parameters
arXiv
收藏 引用
arXiv 2023年
作者: Knaup, Jacob Tsiotras, Panagiotis School of Interactive Computing College of Computing Institute for Robotics and Intelligent Machines Georgia Institute of Technology AtlantaGA30332–0250 United States School of Aerospace Engineering Institute for Robotics and Intelligent Machines Georgia Institute of Technology AtlantaGA30332–0150 United States
This work considers the optimal covariance steering problem for systems subject to both additive noise and uncertain parameters which may enter multiplicatively with the state and the control. The unknown parameters a... 详细信息
来源: 评论
Computationally Efficient Covariance Steering for Systems Subject to Parametric Disturbances and Chance Constraints
arXiv
收藏 引用
arXiv 2023年
作者: Knaup, Jacob W. Tsiotras, Panagiotis The School of Interactive Computing College of Computing the Institute for Robotics and Intelligent Machines Georgia Institute of Technology AtlantaGA30332–0250 United States The School of Aerospace Engineering the Institute for Robotics and Intelligent Machines Georgia Institute of Technology AtlantaGA30332–0150 United States
This work investigates the finite-horizon optimal covariance steering problem for discrete-time linear systems subject to both additive and multiplicative uncertainties as well as state and input chance constraints. I... 详细信息
来源: 评论