咨询与建议

限定检索结果

文献类型

  • 30 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 33 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 23 篇 医学
    • 22 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
    • 1 篇 特种医学
  • 14 篇 工学
    • 12 篇 生物医学工程(可授...
    • 9 篇 光学工程
    • 8 篇 计算机科学与技术...
    • 8 篇 软件工程
    • 7 篇 生物工程
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 1 篇 化学工程与技术
  • 12 篇 理学
    • 10 篇 生物学
    • 3 篇 物理学
    • 1 篇 数学
    • 1 篇 化学
  • 3 篇 管理学
    • 3 篇 图书情报与档案管...
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学

主题

  • 3 篇 neuroimaging
  • 1 篇 precision medici...
  • 1 篇 biomarkers
  • 1 篇 brain age
  • 1 篇 magnetic resonan...
  • 1 篇 arterial spin la...
  • 1 篇 generative adver...
  • 1 篇 depression
  • 1 篇 containers
  • 1 篇 replication stud...
  • 1 篇 brain age gap
  • 1 篇 hazards
  • 1 篇 scanning
  • 1 篇 alzheimer's
  • 1 篇 enigma consortiu...
  • 1 篇 metabolites
  • 1 篇 clinical researc...
  • 1 篇 biological aging
  • 1 篇 diagnosis
  • 1 篇 ageing

机构

  • 10 篇 centre for biome...
  • 8 篇 university of pe...
  • 6 篇 artificial intel...
  • 6 篇 center for biome...
  • 5 篇 correspondece
  • 5 篇 department of ra...
  • 4 篇 department of pa...
  • 3 篇 department of im...
  • 3 篇 center for biome...
  • 3 篇 laboratory for r...
  • 3 篇 centre for medic...
  • 3 篇 department of pu...
  • 3 篇 center for biome...
  • 3 篇 department of ra...
  • 3 篇 center for biome...
  • 3 篇 center for biome...
  • 3 篇 medical oncology...
  • 3 篇 the department o...
  • 3 篇 department of co...
  • 3 篇 department of ra...

作者

  • 11 篇 christos davatzi...
  • 10 篇 ilya m. nasralla...
  • 10 篇 guray erus
  • 10 篇 haochang shou
  • 8 篇 elizabeth mamour...
  • 7 篇 bakas spyridon
  • 7 篇 junhao wen
  • 6 篇 david a. wolk
  • 6 篇 ahmed abdulkadir
  • 6 篇 davatzikos chris...
  • 5 篇 yuhan cui
  • 4 篇 randa melhem
  • 4 篇 ioanna skampardo...
  • 4 篇 bilello michel
  • 4 篇 colen rivka
  • 4 篇 sindhuja tirumal...
  • 4 篇 duygu tosun
  • 4 篇 dhivya srinivasa...
  • 3 篇 balana carmen
  • 3 篇 lee matthew

语言

  • 32 篇 英文
  • 1 篇 其他
检索条件"机构=Centre for Biomedical Image Computing and Analytics"
33 条 记 录,以下是11-20 订阅
排序:
Artificial Intelligence for Dementia Research Methods Optimization
arXiv
收藏 引用
arXiv 2023年
作者: Bucholc, Magda James, Charlotte Al Khleifat, Ahmad Badhwar, AmanPreet Clarke, Natasha Dehsarvi, Amir Madan, Christopher R. Marzi, Sarah J. Shand, Cameron Schilder, Brian M. Tamburin, Stefano Tantiangco, Hanz M. Lourida, Ilianna Llewellyn, David J. Ranson, Janice M. Cognitive Analytics Research Lab School of Computing Engineering & Intelligent Systems Ulster University Derry United Kingdom NIHR Bristol Biomedical Research Centre University Hospitals Bristol Weston NHS Foundation Trust University of Bristol Bristol United Kingdom Department of Basic and Clinical Neuroscience Institute of Psychiatry Psychology & Neuroscience King's College London London United Kingdom Lab Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal Montréal Canada Institut de Génie Biomédical Université de Montréal Montréal Canada Département de Pharmacologie et Physiologie Université de Montréal Montréal Canada Aberdeen Biomedical Imaging Centre School of Medicine Medical Sciences and Nutrition University of Aberdeen Aberdeen United Kingdom School of Psychology University of Nottingham Nottingham United Kingdom UK Dementia Research Institute Imperial College London London United Kingdom Department of Brain Sciences Imperial College London London United Kingdom Centre for Medical Image Computing Department of Computer Science University College London London United Kingdom Department of Neurosciences Biomedicine and Movement Sciences University of Verona Verona Italy Information School University of Sheffield Sheffield United Kingdom University of Exeter Medical School Exeter United Kingdom The Alan Turing Institute London United Kingdom
Introduction: Machine learning (ML) has been extremely successful in identifying key features from high-dimensional datasets and executing complicated tasks with human expert levels of accuracy or greater. Methods: We... 详细信息
来源: 评论
A multivariate MRI model of Alzheimer’s disease risk is associated with clinical diagnosis, PET imaging, and plasma biomarkers in a mixed dementia sample
收藏 引用
Alzheimer's & Dementia 2023年 第S10期19卷
作者: Jeffrey S Phillips Sindhuja Tirumalai Govindarajan Gyujoon Hwang Guray Erus Katheryn A Q Cousins Sandhitsu R. Das David A. Wolk David J. Irwin Murray Grossman Ilya M. Nasrallah Christos Davatzikos Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Centre for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Penn Alzheimer’s Disease Research Center University of Pennsylvania Philadelphia PA USA Frontotemporal Degeneration Center Department of Neurology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology University of Pennsylvania Philadelphia PA USA
Background We sought to validate two structural MRI-based brain health models: Spatial Pattern of Atrophy for REcognition of Alzheimer’s disease (SPARE-AD) and SPARE-Brain Age Gap (SPARE-BAG), which estimates the dis...
来源: 评论
Mitosis domain generalization in histopathology images - The MIDOG challenge
arXiv
收藏 引用
arXiv 2022年
作者: Aubreville, Marc Stathonikos, Nikolas Bertram, Christof A. Klopfleisch, Robert ter Hoeve, Natalie Ciompi, Francesco Wilm, Frauke Marzahl, Christian Donovan, Taryn A. Maier, Andreas Breen, Jack Ravikumar, Nishant Chung, Youjin Park, Jinah Nateghi, Ramin Pourakpour, Fattaneh Fick, Rutger H.J. Hadj, Saima Ben Jahanifar, Mostafa Rajpoot, Nasir Dexl, Jakob Wittenberg, Thomas Kondo, Satoshi Lafarge, Maxime W. Koelzer, Viktor H. Liang, Jingtang Wang, Yubo Long, Xi Liu, Jingxin Razavi, Salar Khademi, April Yang, Sen Wang, Xiyue Veta, Mitko Breininger, Katharina Technische Hochschule Ingolstadt Ingolstadt Germany Pathology Department UMC Utrecht Netherlands Institute of Pathology University of Veterinary Medicine Vienna Austria Institute of Veterinary Pathology Freie Universität Berlin Berlin Germany Computational Pathology Group Radboud UMC Nijmegen Netherlands Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Germany Department of Anatomic Pathology Schwarzman Animal Medical Center New York United States CISTIB Center for Computational Imaging and Simulation Technologies in Biomedicine School of Computing University of Leeds United Kingdom Korea Advanced Institute of Science and Technology Daejeon Korea Republic of Electrical and Electronics Engineering Department Shiraz University of Technology Shiraz Iran Tehran Iran Tribun Health Paris France Tissue Image Analytics Centre Department of Computer Science University of Warwick United Kingdom Fraunhofer-Institute for Integrated Circuits IIS Erlangen Germany Muroran Institute of Technology Hokkaido Japan Department of Pathology and Molecular Pathology University Hospital University of Zurich Zurich Switzerland School of Life Science and Technology Xidian University Shannxi China Histo Pathology Diagnostic Center Shanghai China Xi'an Jiaotong-Liverpool University Suzhou China Electrical Computer and Biomedical Engineering Ryerson University TorontoON Canada Tencent AI Lab Shenzhen518057 China College of Computer Science Sichuan University Chengdu610065 China Medical Image Analysis Group TU Eindhoven Netherlands Department of Artificial Intelligence in Biomedical Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Germany
The density of mitotic figures within tumor tissue is known to be highly correlated with tumor proliferation and thus is an important marker in tumor grading. Recognition of mitotic figures by pathologists is known to... 详细信息
来源: 评论
Cross-scale functional connectivity patterns of the aging brain learned from the multi-cohort iSTAGing study
收藏 引用
Alzheimer's & Dementia 2023年 第S17期19卷
作者: Zhen Zhou Hongming Li Chau B Tran Yuncong Ma Dhivya Srinivasan Ahmed Abdulkadir Junhao Wen Guray Erus Elizabeth Mamourian Ilya M. Nasrallah Nick Bryan David A. Wolk Lori L Beason-Held Susan M. Resnick Haochang Shou Christos Davatzikos Yong Fan University of Pennsylvania philadelphia PA USA Perelman School of Medicine University of Pennsylvania Philadelphia PA USA University of Pennsylvania Philadelphia PA USA Center for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA Laboratory for Research in Neuroimaging Department of Clinical Neurosciences Lausanne University Hospital (CHUV) and University of Lausanne Lausanne Switzerland Centre for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology University of Pennsylvania Philadelphia PA USA Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA University of Texas at Austin Austin TX USA Department of Pathology and Laboratory Medicine Alzheimer’s Disease Center Perelman School of Medicine University of Pennsylvania Philadelphia PA USA National Institute on Aging Baltimore MD USA Laboratory of Behavioral Neuroscience National Institute on Aging Baltimore MD USA Department of Biostatistics Epidemiology & Informatics University of Pennsylvania Philadelphia PA USA Correspondece
Background Brain functional connectivity (FC) measures derived from resting-state fMRI (rsfMRI) data have advanced our understanding of the brain organization. However, most existing studies investigate the brain func...
来源: 评论
NIMG-29. ASSOCIATION OF PARTIAL T2-FLAIR MISMATCH SIGN AND ISOCITRATE DEHYDROGENASE MUTATION IN WHO GRADE 4 GLIOMA/GLIOBLASTOMA: RESULTS FROM THE RESPOND CONSORTIUM
收藏 引用
Neuro-Oncology 2022年 第SUPPLEMENT_7期24卷 vii168–vii169页
作者: Lee, Matthew Sako, Chiharu Patel, Sohil Mohan, Suyash Balana, Carmen Barnholtz-Sloan, Jill Sloan, Andrew Badve, Chaitra Poisson, Laila Griffith, Brent Booth, Thomas Palmer, Joshua Chakravarti, Arnab Bakas, Spyridon Nasrallah, MacLean Choi, Yoon Seong Dicker, Adam Flanders, Adam Shi, Wenyin Mahajan, Abhishek Colen, Rivka Marcus, Daniel Orringer, Daniel Davatzikos, Christos Jain, Rajan Department of Radiology NYU Grossman School of Medicine New York NY USA Center for Biomedical Image Computing and Analytics and Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia USA Department of Radiology University of Virginia School of Medicine Charlottesville USA Center for Biomedical Image Computing and Analytics Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Medical Oncology Department Catalan Institute of Oncology Barcelona Spain Center for Biomedical Informatics and Information Technology and Division of Cancer Epidemiology and Genetics National Cancer Institute Bethesda MD USA Department of Pathology and Department of Neurosurgery Case Western Reserve University and University Hospitals Cleveland Medical Center Seidman Cancer Center and Case Comprehensive Cancer Center Cleveland USA Department of Radiology Case Western Reserve University and University Hospitals Cleveland Medical Center Cleveland USA Department of Public Health Sciences Center for Bioinformatics Henry Ford Health System Detroit MI USA Department of Radiology Henry Ford Health System Detroit MI USA School of Biomedical Engineering and Imaging Sciences King’s College London United Kingdom The Department of Radiation Oncology The James Cancer Hospital Ohio State University Wexner Medical Center Columbus OH USA Department of Radiation Oncology Ohio State University Wexner Medical Center Columbus OH USA Center for Biomedical Image Computing and Analytics Department of Radiology and Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology Yonsei University College of Medicine Seoul Republic of Korea Department of Radiation Oncology Sidney Kimmel Cancer Center Thomas Jefferson
来源: 评论
Why is the Winner the Best?
Why is the Winner the Best?
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: M. Eisenmann A. Reinke V. Weru M. D. Tizabi F. Isensee T. J. Adler S. Ali V. Andrearczyk M. Aubreville U. Baid S. Bakas N. Balu S. Bano J. Bernal S. Bodenstedt A. Casella V. Cheplygina M. Daum M. De Bruijne A. Depeursinge R. Dorent J. Egger D. G. Ellis S. Engelhardt M. Ganz N. Ghatwary G. Girard P. Godau A. Gupta L. Hansen K. Harada M. Heinrich N. Heller A. Hering A. Huaulmé P. Jannin A. E. Kavur O. Kodym M. Kozubek J. Li H. Li J. Ma C. Martín-Isla B. Menze A. Noble V. Oreiller N. Padoy S. Pati K. Payette T. Rädsch J. Rafael-Patiño V. Singh Bawa S. Speidel C. H. Sudre K. Van Wijnen M. Wagner D. Wei A. Yamlahi M. H. Yap C. Yuan M. Zenk A. Zia D. Zimmerer D. Aydogan B. Bhattarai L. Bloch R. Brüngel J. Cho C. Choi Q. Dou I. Ezhov C. M. Friedrich C. Fuller R. R. Gaire A. Galdran Á. García Faura M. Grammatikopoulou S. Hong M. Jahanifar I. Jang A. Kadkhodamohammadi I. Kang F. Kofler S. Kondo H. Kuijf M. Li M. Luu T. Martinčič P. Morais M. A. Naser B. Oliveira D. Owen S. Pang J. Park S. Park S. Płotka E. Puybareau N. Rajpoot K. Ryu N. Saeed A. Shephard P. Shi D. Štepec R. Subedi G. Tochon H. R. Torres H. Urien J. L. Vilaça K. A. Wahid H. Wang J. Wang L. Wang X. Wang B. Wiestler M. Wodzinski F. Xia J. Xie Z. Xiong S. Yang Y. Yang Z. Zhao K. Maier-Hein P. F. Jäger A. Kopp-Schneider L. Maier-Hein Division of Intelligent Medical Systems German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Imaging German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Division of Biostatistics German Cancer Research Center (DKFZ) Heidelberg Germany Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Engineering and Physical Sciences School of Computing University of Leeds Leeds UK Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Sierre Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Lausanne Switzerland Technische Hochschule Ingolstadt Ingolstadt Germany Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA USA Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology University of Washington Seattle WA USA Department of Computer Science Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) University College London London UK Universitat Autònoma de Barcelona & Computer Vision Center Barcelona Spain Division of Translational Surgical Oncology National Center for Tumor Diseases (NCT/UCC) Dresden Dresden Germany Department of Advanced Robotics Istituto Italiano di Tecnologia Italy Department of Electronics Information and Bioengineering Politecnico di Milano Milan Italy IT University of Copenhagen Copenhagen Denmark Department of General Visceral and Transplantation Surgery Heidelberg University Hospital Heidelberg Germany Department of Radiology and Nuc
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from t...
来源: 评论
WHITE MATTER HYPERINTENSITIES IN RELATION TO PATTERNS OF ACCELERATED BRAIN AGING, AD-LIKE ATROPHY AND AMYLOID BURDEN: RESULTS FROM THE ISTAGING CONSORTIUM ON MACHINE LEARNING AND LARGE-SCALE IMAGING analytics
收藏 引用
Alzheimer's & Dementia 2019年 第7期15卷 P904-P905页
作者: Mohamad Habes Raymond Pomponio Haochang Shou Jimit Doshi Aristeidis Sotiras Guray Erus Lenore J. Launer Elizabeth Mamourian Murat Bilgel Kristine Yaffe Dhivya Srinivasan Mark A. Espeland Ilya M. Nasrallah Christopher C. Rowe Henry Voelzke Sterling C. Johnson Marilyn S. Albert Nick Bryan Hans J. Grabe Susan M. Resnick Christos Davatzikos University of Pennsylvania Philadelphia PA USA Department of Neurology and Penn Memory Center University of Pennsylvania Philadelphia PA USA Center for Biomedical Image Computing and Analytics and Department of Radiology University of Pennsylvania Philadelphia PA USA Center for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA National Institute on Aging Bethesda MD USA National Institute on Aging NIH Baltimore MD USA Department of Epidemiology & Biostatistics University of California San Francisco San Francisco CA USA Wake Forest School of Medicine Winston-Salem NC USA Department of Molecular Imaging and Therapy Centre for PET Austin Health Heidelberg Australia Institute for Community Medicine University Medicine Greifswald Greifswald Germany Wisconsin Alzheimer's Institute University of Wisconsin School of Medicine and Public Health Madison WI USA Johns Hopkins University School of Medicine Baltimore MD USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA University of Texas at Austin Austin TX USA Department of Psychiatry University Medicine Greifswald and German Center for Neurodegenerative Disease (DZNE) Rostock/Greifswald Greifswald Germany
来源: 评论
The Alzheimer's Disease Prediction of Longitudinal Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up
arXiv
收藏 引用
arXiv 2020年
作者: Marinescu, Razvan V. Oxtoby, Neil P. Young, Alexandra L. Bron, Esther E. Toga, Arthur W. Weiner, Michael W. Barkhof, Frederik Fox, Nick C. Eshaghi, Arman Ansart, Manon Durrleman, Stanley Lu, Pascal Iddi, Samuel Li, Dan Thompson, Wesley K. Donohue, Michael C. Nahon, Aviv Levy, Yarden Halbersberg, Dan Cohen, Mariya Liao, Huiling Li, Tengfei Yu, Kaixian Zhu, Hongtu Tamez-Peña, José G. Ismail, Aya Wood, Timothy Bravo, Hector Corrada Nguyen, Minh Sun, Nanbo Feng, Jiashi Thomas Yeo, B.T. Chen, Gang Qi, Ke Chen, Shiyang Qiu, Deqiang Buciuman, Ionut Kelner, Alex Pop, Raluca Rimocea, Denisa Ghazi, Mostafa M. Nielsen, Mads Ourselin, Sebastien Sørensen, Lauge Venkatraghavan, Vikram Liu, Keli Rabe, Christina Manser, Paul Hill, Steven M. Howlett, James Huang, Zhiyue Kiddle, Steven Mukherjee, Sach Rouanet, Anaïs Taschler, Bernd Tom, Brian D.M. White, Simon R. Faux, Noel Sedai, Suman de Velasco Oriol, Javier Clemente, Edgar E.V. Estrada, Karol Aksman, Leon Altmann, Andre Stonnington, Cynthia M. Wang, Yalin Wu, Jianfeng Devadas, Vivek Fourrier, Clementine Raket, Lars Lau Sotiras, Aristeidis Erus, Guray Doshi, Jimit Davatzikos, Christos Vogel, Jacob Doyle, Andrew Tam, Angela Diaz-Papkovich, Alex Jammeh, Emmanuel Koval, Igor Moore, Paul Lyons, Terry J. Gallacher, John Tohka, Jussi Ciszek, Robert Jedynak, Bruno Pandya, Kruti Bilgel, Murat Engels, William Cole, Joseph Golland, Polina Klein, Stefan Alexander, Daniel C. Centre for Medical Image Computing University College London United Kingdom Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology United States Biomedical Imaging Group Rotterdam Department of Radiology and Nuclear Medicine Erasmus MC Netherlands Laboratory of NeuroImaging University of Southern California United States Center for Imaging of Neurodegenerative Diseases University of California San Francisco United States Department of Radiology and Nuclear Medicine VU Medical Centre Netherlands Dementia Research Centre The UK Dementia Research Institute UCL Queen Square Institute of Neurology United Kingdom Institut du Cerveau et de la Moelle épinière Paris France Alzheimer's Therapeutic Research Institute University of Southern California United States Department of Statistics and Actuarial Science University of Ghana Ghana Department of Family Medicine and Public Health University of California San Diego United States Ben Gurion University of the Negev Beersheba Israel The University of Texas Health Science Center at Houston Houston United States Instituto Tecnológico y de Estudios Superiores de Monterrey Monterrey Mexico University of Maryland College Park United States National University of Singapore Singapore Singapore Medical College of Wisconsin Milwaukee United States Emory University Atlanta United States Georgia Institute of Technology Atlanta United States Vasile Lucaciu National College Baia Mare Romania Biomediq A/S Denmark Cerebriu A/S Denmark University of Copenhagen Denmark School of Biomedical Engineering and Imaging Sciences King's College London United Kingdom Genentech United States MRC Biostatistics Unit University of Cambridge United Kingdom IBM Research Australia Melbourne Australia Brandeis University Waltham United States Mayo Clinic ScottsdaleAZ United States H. Lundbeck A/S Denmark Clinical Memory Research Unit Department of Clinical Sciences Malmo Lund University Lund Sweden Center
Accurate prediction of progression in subjects at risk of Alzheimer's disease is crucial for enrolling the right subjects in clinical trials. However, a prospective comparison of state-of-the-art algorithms for pr... 详细信息
来源: 评论
***: Dissemination platform for deep learning models
arXiv
收藏 引用
arXiv 2019年
作者: Hosny, Ahmed Schwier, Michael Berger, Christoph Örnek, Evin P. Turan, Mehmet Tran, Phi V. Weninger, Leon Isensee, Fabian Maier-Hein, Klaus H. McKinley, Richard Lu, Michael T. Hoffmann, Udo Menze, Bjoern Bakas, Spyridon Fedorov, Andriy Aerts, Hugo J.W.L. Program Brigham and Women's Hospital Harvard Medical School BostonMA United States Department of Radiation Oncology Dana-Farber Cancer Institute Harvard Medical School BostonMA United States Department of Radiology Brigham and Women's Hospital Dana-Farber Cancer Institute Harvard Medical School BostonMA United States Harvard Medical School BostonMA United States Institute for Advanced Study Department of Informatics Technical University of Munich Munich Germany Max Planck Institute for Intelligent Systems Stuttgart Germany Booz Allen Hamilton McLeanVA United States Institute of Imaging & Computer Vision RWTH Aachen University Aachen Germany Heidelberg Germany Support Centre for Advanced Neuroimaging University Institute of Diagnostic Interventional Neuroradiology Inselspital Bern University Hospital Bern Switzerland Cardiovascular Imaging Research Center Massachusetts General Hospital Harvard Medical School Boston United States Cardiac MR PET CT Program Department of Radiology Massachusetts General Hospital BostonMA United States Center for Biomedical Image Computing and Analytics University of Pennsylvania PhiladelphiaPA United States Radiology & Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Radiology and Nuclear Medicine GROW CARIM Maastricht University Maastricht Netherlands
Recent advances in artificial intelligence research have led to a profusion of studies that apply deep learning to problems in image analysis and natural language processing among others. Additionally, the availabilit... 详细信息
来源: 评论
Discovering Alzheimer’s disease subtypes with imaging and genetic signatures via multi-view weakly-supervised deep clustering
收藏 引用
Alzheimer's & Dementia 2023年 第S17期19卷
作者: Zhijian Yang Junhao Wen Ahmed Abdulkadir Yuhan Cui Guray Erus Elizabeth Mamourian Randa Melhem Dhivya Srinivasan Sindhuja Tirumalai Govindarajan Jiong Chen Mohamad Habes Colin L Masters Paul Maruff Jurgen Fripp Luigi Ferrucci Marilyn S. Albert Sterling C Johnson John C Morris Pamela LaMontagne Daniel S. Marcus Tammie L.S. Benzinger David A. Wolk Li Shen Jingxuan Bao Susan M. Resnick Duygu Tosun Haochang Shou Ilya M. Nasrallah Christos Davatzikos the Alzheimer’s Disease Neuroimaging Initiative, the Preclinical AD Consortium, the Baltimore Longitudinal Study of Aging, and the iSTAGING study 1Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Correspondece Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA University of Bern Bern Switzerland Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL) Center for and Data Science for Integrated Diagnostics (AI2D) Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Center for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA Centre for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA University of Texas Health San Antonio San Antonio TX USA Florey Institute of Neuroscience and Mental Health Parkville VIC Australia The Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville VIC Australia CSIRO Health and Biosecurity Australian E-Health Research Centre Brisbane QLD Australia National Institute on Aging NIH Baltimore MD USA Department of Neurology Johns Hopkins University School of Medicine Baltimore MD USA Wisconsin Alzheimer’s Institute University of Wisconsin-Madison School of Medicine and Public Health Madison WI USA Knight Alzheimer Disease Research Center St. Louis MO USA Washington University School of Medicine Saint Louis MO USA Washington University School of Medicine St. Louis MO USA Department of Neurology University of Pennsylvania School of Medicine Philadelphia PA USA Institute for Biomedical Informatics University of Pennsylvania ATHENS PA USA University of Pennsylvania Philadelphia PA USA Laboratory of Behavioral Neuroscience National Institute on Aging Baltimore MD USA Department of Radiology and Biomedical Imaging University of Cal
Background The heterogeneity of neurodegenerative diseases, including Alzheimer’s disease (AD), has hampered precision diagnosis and treatment. Machine learning methods enable the identification of genetically-explai...
来源: 评论