咨询与建议

限定检索结果

文献类型

  • 30 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 33 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 23 篇 医学
    • 22 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
    • 1 篇 特种医学
  • 14 篇 工学
    • 12 篇 生物医学工程(可授...
    • 9 篇 光学工程
    • 8 篇 计算机科学与技术...
    • 8 篇 软件工程
    • 7 篇 生物工程
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 1 篇 化学工程与技术
  • 12 篇 理学
    • 10 篇 生物学
    • 3 篇 物理学
    • 1 篇 数学
    • 1 篇 化学
  • 3 篇 管理学
    • 3 篇 图书情报与档案管...
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学

主题

  • 3 篇 neuroimaging
  • 1 篇 precision medici...
  • 1 篇 biomarkers
  • 1 篇 brain age
  • 1 篇 magnetic resonan...
  • 1 篇 arterial spin la...
  • 1 篇 generative adver...
  • 1 篇 depression
  • 1 篇 containers
  • 1 篇 replication stud...
  • 1 篇 brain age gap
  • 1 篇 hazards
  • 1 篇 scanning
  • 1 篇 alzheimer's
  • 1 篇 enigma consortiu...
  • 1 篇 metabolites
  • 1 篇 clinical researc...
  • 1 篇 biological aging
  • 1 篇 diagnosis
  • 1 篇 ageing

机构

  • 10 篇 centre for biome...
  • 8 篇 university of pe...
  • 6 篇 artificial intel...
  • 6 篇 center for biome...
  • 5 篇 correspondece
  • 5 篇 department of ra...
  • 4 篇 department of pa...
  • 3 篇 department of im...
  • 3 篇 center for biome...
  • 3 篇 laboratory for r...
  • 3 篇 centre for medic...
  • 3 篇 department of pu...
  • 3 篇 center for biome...
  • 3 篇 department of ra...
  • 3 篇 center for biome...
  • 3 篇 center for biome...
  • 3 篇 medical oncology...
  • 3 篇 the department o...
  • 3 篇 department of co...
  • 3 篇 department of ra...

作者

  • 11 篇 christos davatzi...
  • 10 篇 ilya m. nasralla...
  • 10 篇 guray erus
  • 10 篇 haochang shou
  • 8 篇 elizabeth mamour...
  • 7 篇 bakas spyridon
  • 7 篇 junhao wen
  • 6 篇 david a. wolk
  • 6 篇 ahmed abdulkadir
  • 6 篇 davatzikos chris...
  • 5 篇 yuhan cui
  • 4 篇 randa melhem
  • 4 篇 ioanna skampardo...
  • 4 篇 bilello michel
  • 4 篇 colen rivka
  • 4 篇 sindhuja tirumal...
  • 4 篇 duygu tosun
  • 4 篇 dhivya srinivasa...
  • 3 篇 balana carmen
  • 3 篇 lee matthew

语言

  • 32 篇 英文
  • 1 篇 其他
检索条件"机构=Centre for Biomedical Image Computing and Analytics"
33 条 记 录,以下是31-40 订阅
排序:
WHITE MATTER HYPERINTENSITIES IN RELATION TO PATTERNS OF ACCELERATED BRAIN AGING, AD-LIKE ATROPHY AND AMYLOID BURDEN: RESULTS FROM THE ISTAGING CONSORTIUM ON MACHINE LEARNING AND LARGE-SCALE IMAGING analytics
收藏 引用
Alzheimer's & Dementia 2019年 第7期15卷 P904-P905页
作者: Mohamad Habes Raymond Pomponio Haochang Shou Jimit Doshi Aristeidis Sotiras Guray Erus Lenore J. Launer Elizabeth Mamourian Murat Bilgel Kristine Yaffe Dhivya Srinivasan Mark A. Espeland Ilya M. Nasrallah Christopher C. Rowe Henry Voelzke Sterling C. Johnson Marilyn S. Albert Nick Bryan Hans J. Grabe Susan M. Resnick Christos Davatzikos University of Pennsylvania Philadelphia PA USA Department of Neurology and Penn Memory Center University of Pennsylvania Philadelphia PA USA Center for Biomedical Image Computing and Analytics and Department of Radiology University of Pennsylvania Philadelphia PA USA Center for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA USA National Institute on Aging Bethesda MD USA National Institute on Aging NIH Baltimore MD USA Department of Epidemiology & Biostatistics University of California San Francisco San Francisco CA USA Wake Forest School of Medicine Winston-Salem NC USA Department of Molecular Imaging and Therapy Centre for PET Austin Health Heidelberg Australia Institute for Community Medicine University Medicine Greifswald Greifswald Germany Wisconsin Alzheimer's Institute University of Wisconsin School of Medicine and Public Health Madison WI USA Johns Hopkins University School of Medicine Baltimore MD USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA University of Texas at Austin Austin TX USA Department of Psychiatry University Medicine Greifswald and German Center for Neurodegenerative Disease (DZNE) Rostock/Greifswald Greifswald Germany
来源: 评论
***: Dissemination platform for deep learning models
arXiv
收藏 引用
arXiv 2019年
作者: Hosny, Ahmed Schwier, Michael Berger, Christoph Örnek, Evin P. Turan, Mehmet Tran, Phi V. Weninger, Leon Isensee, Fabian Maier-Hein, Klaus H. McKinley, Richard Lu, Michael T. Hoffmann, Udo Menze, Bjoern Bakas, Spyridon Fedorov, Andriy Aerts, Hugo J.W.L. Program Brigham and Women's Hospital Harvard Medical School BostonMA United States Department of Radiation Oncology Dana-Farber Cancer Institute Harvard Medical School BostonMA United States Department of Radiology Brigham and Women's Hospital Dana-Farber Cancer Institute Harvard Medical School BostonMA United States Harvard Medical School BostonMA United States Institute for Advanced Study Department of Informatics Technical University of Munich Munich Germany Max Planck Institute for Intelligent Systems Stuttgart Germany Booz Allen Hamilton McLeanVA United States Institute of Imaging & Computer Vision RWTH Aachen University Aachen Germany Heidelberg Germany Support Centre for Advanced Neuroimaging University Institute of Diagnostic Interventional Neuroradiology Inselspital Bern University Hospital Bern Switzerland Cardiovascular Imaging Research Center Massachusetts General Hospital Harvard Medical School Boston United States Cardiac MR PET CT Program Department of Radiology Massachusetts General Hospital BostonMA United States Center for Biomedical Image Computing and Analytics University of Pennsylvania PhiladelphiaPA United States Radiology & Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Radiology and Nuclear Medicine GROW CARIM Maastricht University Maastricht Netherlands
Recent advances in artificial intelligence research have led to a profusion of studies that apply deep learning to problems in image analysis and natural language processing among others. Additionally, the availabilit... 详细信息
来源: 评论
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
arXiv
收藏 引用
arXiv 2018年
作者: Bakas, Spyridon Reyes, Mauricio Jakab, Andras Bauer, Stefan Rempfler, Markus Crimi, Alessandro Shinohara, Russell Takeshi Berger, Christoph Ha, Sung Min Rozycki, Martin Prastawa, Marcel Alberts, Esther Lipkova, Jana Freymann, John Kirby, Justin Bilello, Michel Fathallah-Shaykh, Hassan M. Wiest, Roland Kirschke, Jan Wiestler, Benedikt Colen, Rivka Kotrotsou, Aikaterini Lamontagne, Pamela Marcus, Daniel Milchenko, Mikhail Nazeri, Arash Weber, Marc-Andr Mahajan, Abhishek Baid, Ujjwal Gerstner, Elizabeth Kwon, Dongjin Acharya, Gagan Agarwal, Manu Alam, Mahbubul Albiol, Alberto Albiol, Antonio Albiol, Francisco J. Alex, Varghese Allinson, Nigel Amorim, Pedro H.A. Amrutkar, Abhijit Anand, Ganesh Andermatt, Simon Arbel, Tal Arbelaez, Pablo Avery, Aaron Azmat, Muneeza Pranjal, B. Bai, Wenjia Banerjee, Subhashis Barth, Bill Batchelder, Thomas Batmanghelich, Kayhan Battistella, Enzo Beers, Andrew Belyaev, Mikhail Bendszus, Martin Benson, Eze Bernal, Jose Bharath, Halandur Nagaraja Biros, George Bisdas, Sotirios Brown, James Cabezas, Mariano Cao, Shilei Cardoso, Jorge M. Carver, Eric N. Casamitjana, Adri Castillo, Laura Silvana Cat, Marcel Cattin, Philippe Cérigues, Albert Chagas, Vinicius S. Chandra, Siddhartha Chang, Yi-Ju Chang, Shiyu Chang, Ken Chazalon, Joseph Chen, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Cheng, Kun Choudhury, Ahana Roy Chylla, Roger Clrigues, Albert Colleman, Steven Colmeiro, Ramiro German Rodriguez Combalia, Marc Costa, Anthony Cui, Xiaomeng Dai, Zhenzhen Dai, Lutao Daza, Laura Alexandra Deutsch, Eric Ding, Changxing Dong, Chao Dong, Shidu Dudzik, Wojciech Eaton-Rosen, Zach Egan, Gary Escudero, Guilherme Estienne, Tho Everson, Richard Fabrizio, Jonathan Fan, Yong Fang, Longwei Feng, Xue Ferrante, Enzo Fidon, Lucas Fischer, Martin French, Andrew P. Fridman, Naomi Fu, Huan Fuentes, David Gao, Yaozong Gates, Evan Gering, David Gholami, Amir Gierke, Willi Glocker, Ben Gong, Mingming Gonzlez-Vill, Sandra Grosges, T. Guan, Yuanfang Guo, Sheng Gupta, Sudeep Han, Woo-Sup Han, Il Song Harmuth, Ko Center for Biomedical Image Computing and Analytics University of Pennsylvania PhiladelphiaPA United States Department of Radiology Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Institute for Surgical Technology and Biomechanics University of Bern Bern Switzerland Center for MR-Research University Children's Hospital Zurich Zurich Switzerland Support Centre for Advanced Neuroimaging Inselspital Institute for Diagnostic and Interventional Neuroradiology Bern University Hospital Bern Switzerland University Hospital of Zurich Zurich Switzerland Center for Clinical Epidemiology and Biostatistics University of Pennsylvania Philadelphia United States Image-Based Biomedical Modeling Group Technical University of Munich Munich Germany Icahn School of Medicine Mount Sinai Health System New YorkNY United States Leidos Biomedical Research Inc. Frederick National Laboratory for Cancer Research FrederickMD21701 United States Cancer Imaging Program National Cancer Institute National Institutes of Health BethesdaMD20814 United States Department of Neurology University of Alabama at Birmingham BirminghamAL United States Department of Diagnostic Radiology University of Texas MD Anderson Cancer Center HoustonTX United States Department of Psychology Washington University St. LouisMO United States Neuroimaging Informatics and Analysis Center Washington University St. LouisMO United States Department of Radiology Washington University St. LouisMO United States Institute of Diagnostic and Interventional Radiology Pediatric Radiology and Neuroradiology University Medical Center Rostock Ernst-Heydemann-Str. 6 Rostock18057 Germany Tata Memorial Centre Homi Bhabha National Institute Mumbai India Shri Guru Gobind Singhji Institute of Engineering and Technology Nanded India NVIDIA Santa Clara
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrot... 详细信息
来源: 评论