咨询与建议

限定检索结果

文献类型

  • 22 篇 会议
  • 16 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 41 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 27 篇 工学
    • 20 篇 计算机科学与技术...
    • 16 篇 软件工程
    • 5 篇 信息与通信工程
    • 4 篇 光学工程
    • 4 篇 生物工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 力学(可授工学、理...
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 控制科学与工程
    • 1 篇 动力工程及工程热...
    • 1 篇 交通运输工程
  • 17 篇 理学
    • 13 篇 数学
    • 6 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 4 篇 生物学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 7 篇 管理学
    • 4 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 1 篇 公共管理
  • 1 篇 医学
    • 1 篇 公共卫生与预防医...

主题

  • 4 篇 artificial intel...
  • 2 篇 learning systems
  • 2 篇 reinforcement le...
  • 2 篇 information syst...
  • 2 篇 computer communi...
  • 2 篇 data mining and ...
  • 2 篇 data mining
  • 2 篇 database managem...
  • 2 篇 machine learning
  • 2 篇 information stor...
  • 1 篇 probability dens...
  • 1 篇 diffusion distan...
  • 1 篇 causality
  • 1 篇 causal discovery
  • 1 篇 eigenvalues and ...
  • 1 篇 personalized med...
  • 1 篇 systems medicine
  • 1 篇 support vector m...
  • 1 篇 personnel traini...
  • 1 篇 e-learning

机构

  • 3 篇 informatics inst...
  • 3 篇 centre inria de ...
  • 3 篇 tübingen ai cent...
  • 3 篇 department of co...
  • 3 篇 department of st...
  • 3 篇 vector institute
  • 3 篇 department of co...
  • 3 篇 statistics progr...
  • 3 篇 center for advan...
  • 2 篇 department of co...
  • 2 篇 courant institut...
  • 2 篇 the centre for c...
  • 2 篇 department of co...
  • 2 篇 centre for compu...
  • 2 篇 dept. of knowled...
  • 2 篇 helmholtz ai mun...
  • 2 篇 department of st...
  • 2 篇 spotify united k...
  • 2 篇 center for data ...
  • 2 篇 nicta locked bag...

作者

  • 8 篇 pontil massimili...
  • 6 篇 shawe-taylor joh...
  • 4 篇 john shawe-taylo...
  • 4 篇 romera-paredes b...
  • 3 篇 maurer andreas
  • 3 篇 teh yee whye
  • 3 篇 marko grobelnik
  • 2 篇 mongan john
  • 2 篇 li yingzhen
  • 2 篇 aitchison lauren...
  • 2 篇 ricardo silva
  • 2 篇 bernd bischl
  • 2 篇 bernhard schölko...
  • 2 篇 fortuin vincent
  • 2 篇 rudner tim g.j.
  • 2 篇 papamarkou theod...
  • 2 篇 linguraru marius...
  • 2 篇 filippone mauriz...
  • 2 篇 osborne michael ...
  • 2 篇 kristiadi agusti...

语言

  • 40 篇 英文
  • 1 篇 其他
检索条件"机构=Centre for Computational Statistics and Machine Learning"
41 条 记 录,以下是1-10 订阅
排序:
Bayesian conditional cointegration
Bayesian conditional cointegration
收藏 引用
29th International Conference on machine learning, ICML 2012
作者: Bracegirdle, Chris Barber, David Centre for Computational Statistics and Machine Learning University College London Gower Street London United Kingdom
Cointegration is an important topic for time-series, and describes a relationship between two series in which a linear combination is stationary. Classically, the test for cointegration is based on a two stage process... 详细信息
来源: 评论
Improved loss bounds for multiple kernel learning
Improved loss bounds for multiple kernel learning
收藏 引用
14th International Conference on Artificial Intelligence and statistics, AISTATS 2011
作者: Hussain, Zakria Shawe-Taylor, John Centre for Computational Statistics and Machine Learning Department of Computer Science University College London United Kingdom
We propose two new generalization error bounds for multiple kernel learning (MKL). First, using the bound of Srebro and Ben-David (2006) as a starting point, we derive a new version which uses a simple counting argume... 详细信息
来源: 评论
Observational-interventional priors for dose-response learning  30
Observational-interventional priors for dose-response learni...
收藏 引用
30th Annual Conference on Neural Information Processing Systems, NIPS 2016
作者: Silva, Ricardo Department of Statistical Science Centre for Computational Statistics and Machine Learning University College London United Kingdom
Controlled interventions provide the most direct source of information for learning causal effects. In particular, a dose-response curve can be learned by varying the treatment level and observing the corresponding ou... 详细信息
来源: 评论
Matching pursuit kernel fisher discriminant analysis
Matching pursuit kernel fisher discriminant analysis
收藏 引用
12th International Conference on Artificial Intelligence and statistics, AISTATS 2009
作者: Diethe, Tom Hussain, Zakria Hardoon, David R. Shawe-Taylor, John Department of Computer Science Centre for Computational Statistics and Machine Learning University College London WC1E 6BT United Kingdom
We derive a novel sparse version of Kernel Fisher Discriminant Analysis (KFDA) using an approach based on Matching Pursuit (MP). We call this algorithm Matching Pursuit Kernel Fisher Discriminant Analysis (MPKFDA). We... 详细信息
来源: 评论
PAC-Bayes analysis of maximum entropy learning
PAC-Bayes analysis of maximum entropy learning
收藏 引用
12th International Conference on Artificial Intelligence and statistics, AISTATS 2009
作者: Shawe-Taylor, John Hardoon, David R. Department of Computer Science Centre for Computational Statistics and Machine Learning University College London WC1E 6BT United Kingdom
We extend and apply the PAC-Bayes theorem to the analysis of maximum entropy learning by considering maximum entropy classification. The theory introduces a multiple sampling technique that controls an effective margi... 详细信息
来源: 评论
A new feature selection method based on stability theory - Exploring parameters space to evaluate classification accuracy in neuroimaging data
A new feature selection method based on stability theory - E...
收藏 引用
International Workshop on machine learning and Interpretation in Neuroimaging, MLINI 2011, Held at Neural Information Processing, NIPS 2011
作者: Rondina, Jane M. Shawe-Taylor, John Mourão-Miranda, Janaina Centre for Neuroimaging Sciences Institute of Psychiatry King's College London United Kingdom Department of Computer Science Centre for Computational Statistics and Machine Learning University College London United Kingdom
Recently we proposed a feature selection method based on stability theory. In the present work we present an evaluation of its performance in different contexts through a grid search performed in a subset of its param... 详细信息
来源: 评论
Data mining, data fusion and information management
收藏 引用
IEE Proceedings: Intelligent Transport Systems 2006年 第3期153卷 221-229页
作者: Shawe-Taylor, J. De Bie, T. Cristianini, N. Centre for Computational Statistics and Machine Learning University College London Gower Street London WC1E 6BT United Kingdom Department of Engineering Mathematics University of Bristol University Walk Bristol BS8 1TR United Kingdom
The potential impact of advances in data mining, data fusion and information management on the efficient exploitation of the transport infrastructure are addressed. It is argued that the energy currently consumed in t... 详细信息
来源: 评论
Observational-Interventional Priors for Dose-Response learning  16
Observational-Interventional Priors for Dose-Response Learni...
收藏 引用
Annual Conference on Neural Information Processing Systems
作者: Ricardo Silva Department of Statistical Science and Centre for Computational Statistics and Machine Learning University College London
Controlled interventions provide the most direct source of information for learning causal effects. In particular, a dose-response curve can be learned by varying the treatment level and observing the corresponding ou... 详细信息
来源: 评论
An inequality with applications to structured sparsity and multitask dictionary learning  27
An inequality with applications to structured sparsity and m...
收藏 引用
27th Conference on learning Theory, COLT 2014
作者: Maurer, Andreas Pontil, Massimiliano Romera-Paredes, Bernardino Adalbertstrasse 55 MunchenD-80799 Germany Department of Computer Science Centre for Computational Statistics and Machine Learning University College London United Kingdom Department of Computer Science UCL Interactive Centre University College London United Kingdom
From concentration inequalities for the suprema of Gaussian or Rademacher processes an inequality is derived. It is applied to sharpen existing and to derive novel bounds on the empirical Rademacher complexities of un... 详细信息
来源: 评论
A Bayesian approach to approximate joint diagonalization of square matrices
A Bayesian approach to approximate joint diagonalization of ...
收藏 引用
29th International Conference on machine learning, ICML 2012
作者: Zhong, Mingjun Girolami, Mark Department of Biomedical Engineering Dalian University of Technology Dalian 116023 China Department of Statistical Science Centre for Computational Statistics and Machine Learning University College London London WCIE 7HB United Kingdom
We present a Bayesian scheme for the approximate diagonalisation of several square matrices which are not necessarily symmetric. A Gibbs sampler is derived to simulate samples of the common eigenvectors and the eigenv... 详细信息
来源: 评论