咨询与建议

限定检索结果

文献类型

  • 289 篇 期刊文献
  • 59 篇 会议

馆藏范围

  • 348 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 212 篇 理学
    • 89 篇 物理学
    • 62 篇 数学
    • 53 篇 地球物理学
    • 47 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 19 篇 化学
  • 200 篇 工学
    • 96 篇 计算机科学与技术...
    • 79 篇 软件工程
    • 37 篇 光学工程
    • 34 篇 电气工程
    • 34 篇 生物医学工程(可授...
    • 33 篇 生物工程
    • 32 篇 电子科学与技术(可...
    • 18 篇 信息与通信工程
    • 16 篇 仪器科学与技术
    • 14 篇 化学工程与技术
    • 11 篇 环境科学与工程(可...
    • 10 篇 材料科学与工程(可...
    • 10 篇 控制科学与工程
    • 8 篇 机械工程
    • 6 篇 力学(可授工学、理...
    • 6 篇 安全科学与工程
  • 43 篇 医学
    • 32 篇 临床医学
    • 25 篇 基础医学(可授医学...
    • 16 篇 公共卫生与预防医...
    • 15 篇 药学(可授医学、理...
  • 34 篇 管理学
    • 22 篇 管理科学与工程(可...
    • 13 篇 工商管理
    • 8 篇 图书情报与档案管...
  • 12 篇 农学
  • 8 篇 法学
    • 7 篇 社会学
  • 5 篇 经济学
  • 3 篇 教育学
  • 1 篇 文学

主题

  • 7 篇 galaxies
  • 6 篇 machine learning
  • 5 篇 covid-19
  • 5 篇 surveys
  • 5 篇 photometry
  • 5 篇 active galactic ...
  • 4 篇 integral equatio...
  • 4 篇 x-ray generation...
  • 4 篇 stars
  • 4 篇 high intensity l...
  • 4 篇 decision making
  • 4 篇 molecular dynami...
  • 4 篇 forecasting
  • 3 篇 internet of thin...
  • 3 篇 laser-plasma int...
  • 3 篇 planets
  • 3 篇 reinforcement le...
  • 3 篇 deep learning
  • 3 篇 three-dimensiona...
  • 3 篇 image segmentati...

机构

  • 34 篇 center for compu...
  • 16 篇 center for data ...
  • 10 篇 department of as...
  • 10 篇 institute for gr...
  • 9 篇 space telescope ...
  • 9 篇 department for a...
  • 9 篇 national astrono...
  • 9 篇 department of as...
  • 9 篇 waseda research ...
  • 9 篇 nasa ames resear...
  • 9 篇 institute for co...
  • 8 篇 centre for astro...
  • 8 篇 department of as...
  • 8 篇 department of as...
  • 8 篇 department of as...
  • 7 篇 university of gl...
  • 7 篇 institut d’astro...
  • 7 篇 department of as...
  • 7 篇 department of ph...
  • 7 篇 department of as...

作者

  • 9 篇 price sedona h.
  • 9 篇 atek hakim
  • 9 篇 whitaker katheri...
  • 9 篇 wang bingjie
  • 9 篇 bezanson rachel
  • 9 篇 leja joel
  • 9 篇 greene jenny e.
  • 8 篇 cutler sam e.
  • 8 篇 williams christi...
  • 8 篇 rodriguez joseph...
  • 8 篇 fujimoto seiji
  • 8 篇 weaver john r.
  • 8 篇 pan richard
  • 8 篇 marchesini danil...
  • 7 篇 kokorev vasily
  • 7 篇 vorobyev ilya
  • 7 篇 fudamoto yoshino...
  • 7 篇 strader jay
  • 7 篇 setton david j.
  • 7 篇 chemerynska iryn...

语言

  • 322 篇 英文
  • 23 篇 其他
  • 2 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Centre for Computational and Data-Intensive Science and Engineering"
348 条 记 录,以下是21-30 订阅
排序:
Bayesian sparsification of deep C-valued networks  37
Bayesian sparsification of deep C-valued networks
收藏 引用
37th International Conference on Machine Learning, ICML 2020
作者: Nazarov, Ivan Burnaev, Evgeny Centre for Data Intensive Sciecne and Engineering Skolkovo Insitiute of Science and Technology Msocow Russia
With continual miniaturization ever more applications of deep learning can be found in embedded systems, where it is common to encounter data with natural representation in the complex domain. To this end we extend Sp... 详细信息
来源: 评论
Medical history predicts phenome-wide disease onset and enables the rapid response to emerging health threats (vol 16, 585, 2025)
收藏 引用
NATURE COMMUNICATIONS 2025年 第1期16卷 1-15页
作者: Steinfeldt, Jakob Wild, Benjamin Buergel, Thore Pietzner, Maik Upmeier zu Belzen, Julius Vauvelle, Andre Hegselmann, Stefan Denaxas, Spiros Hemingway, Harry Langenberg, Claudia Landmesser, Ulf Deanfield, John Eils, Roland Department of Cardiology Angiology and Intensive Care Medicine Deutsches Herzzentrum der Charité (DHZC) Berlin Germany Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin Klinik/Centrum Berlin Germany Computational Medicine Berlin Institute of Health (BIH) Charite - University Medicine Berlin Berlin Germany Friede Springer Cardiovascular Prevention Center@Charite Charite - University Medicine Berlin Berlin Germany Institute of Cardiovascular Sciences University College London London UK Berlin Institute of Health (BIH) Charite - University Medicine Berlin Berlin Germany DZHK (German Centre for Cardiovascular Research) Partner Site Berlin Berlin Berlin Germany MRC Epidemiology Unit Institute of Metabolic Science University of Cambridge Cambridge UK Precision Health University Research Institute Queen Mary University of London and Barts NHS Trust London UK Center for Digital Health Berlin Institute of Health (BIH) Charite - University Medicine Berlin Berlin Germany Health Data Science Unit Heidelberg University Hospital and BioQuant Heidelberg Germany Institute of Health Informatics University College London London UK British Heart Foundation Data Science Centre London UK Health Data Research UK London UK National Institute for Health Research Biomedical Research Centre at University College London Hospitals London UK Institute for Medical Engineering and Science Massachusetts Institute of Technology Massachusetts USA Pattern Recognition and Image Analysis Lab University of Münster Münster Germany
The COVID-19 pandemic exposed a global deficiency of systematic, data-driven guidance to identify high-risk individuals. Here, we illustrate the utility of routinely recorded medical history to predict the risk for 17...
来源: 评论
RL Perceptron: Generalization Dynamics of Policy Learning in High Dimensions
收藏 引用
Physical Review X 2025年 第2期15卷 021051-021051页
作者: Nishil Patel Sebastian Lee Stefano Sarao Mannelli Sebastian Goldt Andrew Saxe Gatsby Computational Neuroscience Unit University College London Gower Street London WC1E 6BT United Kingdom Imperial College London Exhibition Road South Kensington London SW7 2AZ United Kingdom Data Science and AI Computer Science and Engineering Chalmers University of Technology and University of Gothenburg Gothenburg Sweden School of Computer Science and Applied Mathematics University of the Witwatersrand Johannesburg South Africa International School of Advanced Studies (SISSA) Via Bonomea 265 34136 Trieste Italy Sainsbury Wellcome Centre University College London 25 Howland Street London W1T 4JG United Kingdom
Reinforcement learning (RL) algorithms have transformed many domains of machine learning. To tackle real-world problems, RL often relies on neural networks to learn policies directly from pixels or other high-dimensio... 详细信息
来源: 评论
Machine learning for modelling unstructured grid data in computational physics: A review
收藏 引用
Information Fusion 2025年 123卷
作者: Cheng, Sibo Bocquet, Marc Ding, Weiping Finn, Tobias Sebastian Fu, Rui Fu, Jinlong Guo, Yike Johnson, Eleda Li, Siyi Liu, Che Moro, Eric Newton Pan, Jie Piggott, Matthew Quilodran, Cesar Sharma, Prakhar Wang, Kun Xiao, Dunhui Xue, Xiao Zeng, Yong Zhang, Mingrui Zhou, Hao Zhu, Kewei Arcucci, Rossella CEREA ENPC EDF R&D Institut Polytechnique de Paris Île-de-France France School of Artificial Intelligence and Computer Science Nantong University Jiangsu Nantong226019 China School of Mathematical Sciences Key Laboratory of Intelligent Computing and Applications Tongji University Shanghai200092 China Faculty of Data Science City University of Macau 999078 China School of Engineering and Materials Science Faculty of Science and Engineering Queen Mary University of London LondonE1 4NS United Kingdom Zienkiewicz Centre for Modelling Data and AI Faculty of Science and Engineering Swansea University SwanseaSA1 8EN United Kingdom Department of Computer Science and Engineering Hong Kong university of science and technology Hong Kong Department of Earth Science & Engineering Imperial College London LondonSW7 2AZ United Kingdom Tianjin Key Laboratory of Imaging and Sensing Microelectronics Technology School of Microelectronics Tianjin University Tianjin300072 China T2N 1N4 Canada T2N 1N4 Canada Undaunted Grantham Institute for Climate Change and the Environment Imperial College London LondonSW7 2AZ United Kingdom Culham Campus AbingdonOX14 3DB United Kingdom Centre for Computational Science Department of Chemistry University College London LondonWC1H 0AJ United Kingdom H3G 1M8 Canada Australia Department of Chemical Engineering University College London LondonWC1E 6BT United Kingdom
Unstructured grid data are essential for modelling complex geometries and dynamics in computational physics. Yet, their inherent irregularity presents significant challenges for conventional machine learning (ML) tech... 详细信息
来源: 评论
AA-ICP: Iterative closest point with anderson acceleration
AA-ICP: Iterative closest point with anderson acceleration
收藏 引用
2018 IEEE International Conference on Robotics and Automation, ICRA 2018
作者: Pavlov, Artem L. Ovchinnikov, Grigory W.V. Derbyshev, Dmitry Yu. Tsetserukou, Dzmitry Oseledets, Ivan V. Skolkovo Institute of Science and Technology Skolkovo Innovation Center Space Center Moscow143026 Russia Skolkovo Institute of Science and Technology Computational and Data-Intensive Science and Engineering Russia Moscow Institute of Physics and Technology Russia Skolkovo Institute of Science and Technology Space Center Russia Skolkovo Institute of Science and Technology Center for Computational and Data-Intensive Science and Engineering Russia
Iterative Closest Point (ICP) is a widely used method for performing scan-matching and registration. Being simple and robust, this method is still computationally expensive and may be challenging to use in real-time a... 详细信息
来源: 评论
Logging Multi-Component Supply Chain Production in Blockchain  2021
Logging Multi-Component Supply Chain Production in Blockchai...
收藏 引用
4th International Conference on Computers in Management and Business, ICCMB 2021
作者: Madhwal, Yash Chistiakov, Ivan Yanovich, Yury Faculty of Computer Science National Research University Higher School of Economics Russia Center for Computational and Data-Intensive Science and Engineering Skolkovo Institute of Science and Technology Russia Center for Computational and Data-Intensive Science and Engineering Skolkovo Inst. of Sci. and Technol. and Lab. of Data Mining and Predictive Modelling Inst. for Info. Transmiss. Prob. Russia
The supply chain is a thriving industry where numerous parties have different interests. Subsequently, the immense volume of data produced is difficult to audit. Some information can be lost or intentionally distorted... 详细信息
来源: 评论
Blockchain-Based Solution to Prevent Plastic Pipes Fraud*  7
Blockchain-Based Solution to Prevent Plastic Pipes Fraud*
收藏 引用
7th International Conference on Software Defined Systems, SDS 2020
作者: Kostyuk, Pavel Kudryashov, Sergey Madhwal, Yash Maslov, Ivan Tkachenko, Vladislav Yanovich, Yury Bitfury Russia Bitfury Moscow123112 Russia Center for Computational and Data-Intensive Science and Engineering Moscow121205 Russia Moscow119530 Russia
Use of counterfeit plastic pipes has caused considerable financial damage to the states and companies. This article proposes a blockchain-based supply chain management system for its market. It can make pipes' use... 详细信息
来源: 评论
AccuRA: Accurate alignment of short reads on scalable reconfigurable accelerators  16
AccuRA: Accurate alignment of short reads on scalable reconf...
收藏 引用
16th International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation, SAMOS 2016
作者: Natarajan, Santhi Kumar, N Krishna Pal, Debnath Nandy, S.K. Centre for Nano Science and Engineering Indian Institute of Science Bangalore India Department of Computational and Data Sciences Indian Institute of Science Bangalore India
Classified as a big data problem, Short Read Mapping (SRM) within the Next Generation Sequencing (NGS) pipeline presents profound technical and computing challenges. Existing solutions handle the high volume of data l... 详细信息
来源: 评论
New bounds and generalizations of locally recoverable codes with availability
New bounds and generalizations of locally recoverable codes ...
收藏 引用
作者: Kruglik, Stanislav Nazirkhanova, Kamilla Frolov, Alexey Center for Computational and Data-Intensive Science and Engineering Skolkovo Institute of Science and Technology Moscow121205 Russia Department of Radio Engineering and Cybernetics Moscow Institute of Physics and Technology Moscow141701 Russia
We investigate the distance properties of linear locally recoverable codes (LRC codes) with all-symbol locality and availability. New upper and lower bounds on the minimum distance of such codes are derived. The upper... 详细信息
来源: 评论
Estimation of the Second Moment Based on Rounded data
收藏 引用
Journal of Mathematical sciences (United States) 2019年 第6期237卷 819-825页
作者: Samsonov, S.V. Ushakov, N.G. Ushakov, V.G. Center for Computational and Data-Intensive Science and Engineering Skolkovo Institute of Science and Technology Moscow Russian Federation Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim Norway Moscow State University Moscow Russian Federation
Sample moments are unbiased estimators of theoretical moments (if the latter exist). In practice, however, observations are rounded under registration, which leads to systematic errors. In [1–3] it was shown that ran... 详细信息
来源: 评论