咨询与建议

限定检索结果

文献类型

  • 1,285 篇 期刊文献
  • 1,237 篇 会议
  • 11 册 图书

馆藏范围

  • 2,533 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,586 篇 工学
    • 1,185 篇 计算机科学与技术...
    • 977 篇 软件工程
    • 365 篇 信息与通信工程
    • 246 篇 生物工程
    • 242 篇 控制科学与工程
    • 213 篇 电气工程
    • 202 篇 生物医学工程(可授...
    • 188 篇 光学工程
    • 115 篇 电子科学与技术(可...
    • 107 篇 网络空间安全
    • 80 篇 化学工程与技术
    • 79 篇 机械工程
    • 77 篇 仪器科学与技术
    • 59 篇 动力工程及工程热...
    • 54 篇 安全科学与工程
  • 866 篇 理学
    • 417 篇 数学
    • 293 篇 生物学
    • 230 篇 物理学
    • 170 篇 统计学(可授理学、...
    • 110 篇 化学
    • 64 篇 系统科学
  • 524 篇 管理学
    • 320 篇 管理科学与工程(可...
    • 229 篇 图书情报与档案管...
    • 158 篇 工商管理
  • 214 篇 医学
    • 171 篇 临床医学
    • 149 篇 基础医学(可授医学...
    • 99 篇 公共卫生与预防医...
    • 91 篇 药学(可授医学、理...
  • 82 篇 法学
    • 75 篇 社会学
  • 57 篇 经济学
    • 57 篇 应用经济学
  • 48 篇 农学
  • 28 篇 教育学
  • 17 篇 文学
  • 3 篇 艺术学
  • 2 篇 军事学

主题

  • 131 篇 accuracy
  • 114 篇 deep learning
  • 88 篇 machine learning
  • 79 篇 training
  • 76 篇 feature extracti...
  • 71 篇 convolutional ne...
  • 70 篇 real-time system...
  • 56 篇 computational mo...
  • 49 篇 predictive model...
  • 48 篇 artificial intel...
  • 46 篇 optimization
  • 43 篇 data models
  • 41 篇 internet of thin...
  • 37 篇 support vector m...
  • 34 篇 reinforcement le...
  • 34 篇 semantics
  • 31 篇 genetic programm...
  • 31 篇 decision making
  • 31 篇 analytical model...
  • 31 篇 security

机构

  • 77 篇 maharishi school...
  • 53 篇 centre of interd...
  • 44 篇 department of ar...
  • 39 篇 vishwakarma inst...
  • 35 篇 centre for artif...
  • 34 篇 institute of pho...
  • 33 篇 school of comput...
  • 32 篇 department of co...
  • 27 篇 shenzhen institu...
  • 26 篇 school of comput...
  • 24 篇 centre of resear...
  • 23 篇 school of comput...
  • 23 篇 vivekananda glob...
  • 21 篇 guangdong key la...
  • 21 篇 chitkara centre ...
  • 19 篇 department of el...
  • 18 篇 chitkara univers...
  • 17 篇 school of comput...
  • 17 篇 shanghai artific...
  • 17 篇 school of artifi...

作者

  • 50 篇 zhang mengjie
  • 42 篇 tao dacheng
  • 34 篇 xue bing
  • 23 篇 min gu
  • 19 篇 mei yi
  • 16 篇 ding weiping
  • 15 篇 shen linlin
  • 15 篇 mengjie zhang
  • 14 篇 ghojogh benyamin
  • 13 篇 seifedine kadry
  • 12 篇 ketan kotecha
  • 12 篇 ghodsi ali
  • 12 篇 wang meng
  • 12 篇 mirjalili seyeda...
  • 12 篇 iglesias juan eu...
  • 12 篇 xiong hui
  • 12 篇 karray fakhri
  • 11 篇 bing xue
  • 11 篇 li tianrui
  • 11 篇 liu tongliang

语言

  • 2,289 篇 英文
  • 226 篇 其他
  • 23 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Centre for Data Science and Artificial Intelligence&School of Engineering and Computer Science"
2533 条 记 录,以下是2321-2330 订阅
排序:
BRIDGE: Benchmarking Large Language Models for Understanding Real-world Clinical Practice Text
arXiv
收藏 引用
arXiv 2025年
作者: Wu, Jiageng Gu, Bowen Zhou, Ren Xie, Kevin Snyder, Doug Jiang, Yixing Carducci, Valentina Wyss, Richard Desai, Rishi J. Alsentzer, Emily Celi, Leo Anthony Rodman, Adam Schneeweiss, Sebastian Chen, Jonathan H. Romero-Brufau, Santiago Lin, Kueiyu Joshua Yang, Jie Division of Pharmacoepidemiology and Pharmacoeconomics Department of Medicine Brigham and Women’s Hospital Harvard Medical School BostonMA United States Siebel School of Computing and Data Science The Grainger College of Engineering University of Illinois Urbana-Champaign UrbanaIL United States Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology CambridgeMA United States Department of Otorhinolaryngology – Head & Neck Surgery Mayo Clinic RochesterMN United States Department of Biostatistics Harvard T.H. Chan School of Public Health Harvard University BostonMA United States Department of Biomedical Data Science Stanford University Palo AltoCA United States Laboratory for Computational Physiology Massachusetts Institute of Technology CambridgeMA United States Division of Pulmonary Critical Care and Sleep Medicine Beth Israel Deaconess Medical Center BostonMA United States Division of General Internal Medicine Department of Medicine Beth Israel Deaconess Medical Center BostonMA United States Stanford Center for Biomedical Informatics Research Stanford University StanfordCA United States Division of Hospital Medicine Stanford University StanfordCA United States Stanford Clinical Excellence Research Center Stanford University StanfordCA United States Kempner Institute for the Study of Natural and Artificial Intelligence Harvard University MA United States Broad Institute of MIT and Harvard CambridgeMA United States Harvard Data Science Initiative Harvard University CambridgeMA United States
Large language models (LLMs) hold great promise for medical applications and are evolving rapidly, with new models being released at an accelerated pace. However, current evaluations of LLMs in clinical contexts remai... 详细信息
来源: 评论
Multi-view adaptive fusion network for 3D object detection
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Guojun Tian, Bin Zhang, Yachen Chen, Long Cao, Dongpu Wu, Jian State Key Laboratory of Automotive Simulation and Control Jilin University Changchun130022 China State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences School of Artificial Intelligence University of Chinese Academy of Sciences Beijing100190 China School of Data and Computer Science Sun Yat-Sen University Guangzhou510275 China Lab University of Waterloo Canada College of Automotive Engineering Jilin University China
3D object detection based on LiDAR-camera fusion is becoming an emerging research theme for autonomous driving. However, it has been surprisingly difficult to effectively fuse both modalities without information loss ... 详细信息
来源: 评论
Bridging explicit and implicit deep generative models via neural Stein estimators
arXiv
收藏 引用
arXiv 2019年
作者: Wu, Qitian Gao, Rui Zha, Hongyuan Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University University of Texas Austin United States School of Data Science Shenzhen Institute of Artificial Intelligence and Robotics for Society The Chinese University of Hong Kong Shenzhen Hong Kong The Chinese University of Hong Kong Shenzhen China
There are two types of deep generative models: explicit and implicit. The former defines an explicit density form that allows likelihood inference;while the latter targets a flexible transformation from random noise t...
来源: 评论
KE-GAN: Knowledge Embedded Generative Adversarial Networks for Semi-Supervised Scene Parsing
KE-GAN: Knowledge Embedded Generative Adversarial Networks f...
收藏 引用
IEEE/CVF Conference on computer Vision and Pattern Recognition
作者: Mengshi Qi Yunhong Wang Jie Qin Annan Li State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University China Beijing Advanced Innovation Center for Big Data and Brain Computing Inception Institute of Artificial Intelligence UAE
In recent years, scene parsing has captured increasing attention in computer vision. Previous works have demonstrated promising performance in this task. However, they mainly utilize holistic features, whilst neglecti...
来源: 评论
Retraction notice to "A strategic review on sustainable approaches in municipal solid waste management and energy recovery: Role of artificial intelligence, economic stability and life cycle assessment" [Bioresour. Technol. 379 (2023) 129044]
收藏 引用
Bioresource technology 2025年 421卷 132185页
作者: Rajendiran Naveenkumar Jayaraj Iyyappan Ravichandran Pravin Seifedine Kadry Jeehoon Han Raveendran Sindhu Mukesh Kumar Awasthi Samuel Lalthazuala Rokhum Gurunathan Baskar Biological Systems Engineering University of Wisconsin-Madison Madison WI 53706 United States Forest Products Laboratory USDA Forest Service Madison WI 53726 United States. Department of Biotechnology Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences (SIMATS) Thandalam Chennai 602107 India. Department of Biotechnology St. Joseph's College of Engineering Chennai 600119 India. Department of Applied Data Science Noroff University College Kristiansand Norway Artificial Intelligence Research Center (AIRC) Ajman University Ajman 346 United Arab Emirates Department of Electrical and Computer Engineering Lebanese American University Byblos Lebanon. Department of Chemical Engineering Pohang University of Science and Technology Pohang 37673 Republic of Korea. Department of Food Technology TKM Institute of Technology Kollam Kerala India. College of Natural Resources and Environment Northwest A&F University Yangling Shaanxi Province 712100 China. Department of Chemistry National Institute of Technology Silchar 788010 Assam India. Department of Biotechnology St. Joseph's College of Engineering Chennai 600119 India Department of Applied Data Science Noroff University College Kristiansand Norway. Electronic address: basg2002@***.
来源: 评论
Cost-sensitive feature selection by optimizing F-measures
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Meng Xu, Chang Luo, Yong Xu, Chao Wen, Yonggang Tao, Dacheng Cooperative Medianet Innovation Center School of Electronics Engineering and Computer Science Peking University Beijing100871 China UBTECH Sydney Artificial Intelligence Centre School of Information Technologies Faculty of Engineering and Information Technologies University of Sydney 6 Cleveland St DarlingtonNSW2008 Australia School of Computer Science and Engineering Nanyang Technological University 639798 Singapore
Feature selection is beneficial for improving the performance of general machine learning tasks by extracting an informative subset from the high-dimensional features. Conventional feature selection methods usually ig... 详细信息
来源: 评论
Soft-ranking label encoding for robust facial age estimation
arXiv
收藏 引用
arXiv 2019年
作者: Zeng, Xusheng Ding, Changxing Wen, Yonggang Tao, Dacheng School of Electronic and Information Engineering South China University of Technology 381 Wushan Road Tianhe District Guangzhou510000 China School of Computer Science and Engineering Nanyang Technological University 639798 Singapore UBTECH Sydney Artificial Intelligence Centre School of Computer Science Faculty of Engineering University of Sydney 6 Cleveland St. DarlingtonNSW2008 Australia
Automatic facial age estimation can be used in a wide range of real-world applications. However, this process is challenging due to the randomness and slowness of the aging process. Accordingly, in this paper, we prop... 详细信息
来源: 评论
Joint Frequency and Image Space Learning for MRI Reconstruction and Analysis
arXiv
收藏 引用
arXiv 2020年
作者: Singh, Nalini M. Iglesias, Juan Eugenio Adalsteinsson, Elfar Dalca, Adrian V. Golland, Polina Computer Science and Artificial Intelligence Laboratory MIT CambridgeMA United States Dept. of Health Sciences & Technology MIT CambridgeMA United States A. A. Martinos Center Massachusetts General Hospital BostonMA United States Harvard Medical School CambridgeMA United States Centre for Medical Image Computing UCL London United Kingdom Research Laboratory of Electronics MIT CambridgeMA United States Dept. of Electrical Engineering & Computer Science MIT CambridgeMA United States
We propose neural network layers that explicitly combine frequency and image feature representations and show that they can be used as a versatile building block for reconstruction from frequency space data. Our work ... 详细信息
来源: 评论
CenterNet3D: An anchor free object detector for point cloud
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Guojun Wu, Jian Tian, Bin Teng, Siyu Chen, Long Cao, Dongpu The State Key Laboratory of Automotive Simulation and Control Jilin University Changchun130022 China The State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing100190 China The School of Artificial Intelligence University of Chinese Academy of Sciences Beijing100190 China The Department of Computer Science Hong Kong Baptist University Hong Kong The School of Data and Computer Science Sun Yat-Sen University Guangdong Guangzhou510275 China The Department of Mechanical and Mechatronics Engineering University of Waterloo WaterlooONN2L 3G1 Canada
Accurate and fast 3D object detection from point clouds is a key task in autonomous driving. Existing one-stage 3D object detection methods can achieve real-time performance, however, they are dominated by anchor-base... 详细信息
来源: 评论
An overview of the LALA project
An overview of the LALA project
收藏 引用
2020 Workshop on Adoption, Adaptation and Pilots of Learning Analytics in Under-Represented Regions, LAUR 2020
作者: Muñoz-Merino, Pedro J. Kloos, Carlos Delgado Tsai, Yi-Shan Gasevic, Dragan Verbert, Katrien Pérez-Sanagustín, Mar Hilliger, Isabel Zúñiga-Prieto, Miguel Ángel Ortiz-Rojas, Margarita Scheihing, Eliana Department of Telematics Engineering Universidad Carlos III de Madrid Av. Universidad 30 Leganés Madrid28911 Spain School of Informatics University of Edinburgh Edinburgh United Kingdom Department of Data Science and Artificial Intelligence Faculty of Information Technology Monash University 29 Ancora Imparo Way ClaytonVIC3800 Australia Department of Computer Science KU Leuven Celestijnenlaan 200A LeuvenB-3001 Belgium Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860 Macul Santiago Chile Department Computer Science Universidad de Cuenca Av. 12 de Abril y Av. Loja Cuenca010203 Ecuador Information Technology Center Escuela Superior Politécnica del Litoral ESPOL Km 30.5 Vía Perimetral 09-01-5863 Guayaquil Ecuador Universidad Austral de Chile Valdivia Chile Institute de Recherce en Informatique de Toulouse Université Paul Sabatier Toulouse III 118 Route de Narbonne ToulouseF-31062 France
The LALA project ("Building Capacity to Use Learning Analytics to Improve Higher Education in Latin America") is a project that aims at building capacity about the use of data in education for improving educ... 详细信息
来源: 评论